ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Hall signatures of nonsymmorphic nodal lines in doped chromium chalcospinel CuCr$_2$Se$_4$

84   0   0.0 ( 0 )
 نشر من قبل Subhasis Samanta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An emerging phase of matter among the class of topological materials is nodal line semimetal, possessing symmetry-protected one-dimensional gapless lines at the (or close to) the Fermi level in $k$-space. When the $k$-dispersion of the nodal line is weak, van Hove singularities generated by the almost flat nodal lines may be prone to instabilities introduced by additional perturbations such as spin-orbit coupling or magnetism. Here, we study Cr-based ferromagnetic chalcospinel compound CuCr$_2$Se$_4$ (CCS) via first-principles electronic structure methods and reveal the true origin of its dissipationless anomalous Hall conductivity, which was not well understood previously. We find that CCS hosts nodal lines protected by nonsymmorphic symmetries, located in the vicinity of Fermi level, and that such nodal lines are the origin of the previously observed distinct behavior of the anomalous Hall signature in the presence of electron doping. The splitting of nodal line via spin-orbit coupling produces a large Berry curvature, which leads to a significant response in anomalous Hall conductivity. Upon electron doping via chemical substitution or gating, or rotation of magnetization via external magnetic field, steep change of anomalous Hall behavior occurs, which makes CCS a promising compound for low energy spintronics applications.

قيم البحث

اقرأ أيضاً

Using polarized optical and magneto-optical spectroscopy, we have demonstrated universal aspects of electrodynamics associated with Dirac nodal-lines. We investigated anisotropic electrodynamics of NbAs$_2$ where the spin-orbit interaction triggers e nergy gaps along the nodal-lines, which manifest as sharp steps in the optical conductivity spectra. We show experimentally and theoretically that shifted 2D Dirac nodal-lines feature linear scaling $sigma_1 (omega)simomega$, similar to 3D nodal-points. Massive Dirac nature of the nodal-lines are confirmed by magneto-optical data, which may also be indicative of theoretically predicted surface states. Optical data also offer a natural explanation for the giant magneto-resistance in NbAs$_2$.
We report pressure-dependent reflection and transmission measurements on ZnCr$_2$Se$_4$, HgCr$_2$S$_4$, and CdCr$_2$O$_4$ single crystals at room temperature over a broad spectral range 200-24000 cm$^{-1}$. The pressure dependence of the phonon modes and the high-frequency electronic excitations indicates that all three compounds undergo a pressure-induced structural phase transition with the critical pressure 15 GPa, 12 GPa, and 10 GPa for CdCr$_2$O$_4$, HgCr$_2$S$_4$, and ZnCr$_2$Se$_4$, respectively. The eigenfrequencies of the electronic transitions are very close to the expected values for chromium crystal-field transitions. In the case of the chalcogenides pressure induces a red shift of the electronic excitation which indicates a strong hybridization of the Cr d-bands with the chalcogenide bands.
The anomalous Hall effect (AHE) is a non-linear Hall effect appearing in magnetic conductors, boosted by internal magnetism beyond what is expected from the ordinary Hall effect. With the recent discovery of the quantized version of the AHE, the quan tum anomalous Hall effect (QAHE), in Cr- or V-doped topological insulator (TI) (Sb,Bi)$_2$Te$_3$ thin films, the AHE in magnetic TIs has been attracting significant interest. However, one of the puzzles in this system has been that while Cr- or V-doped (Sb,Bi)$_2$Te$_3$ and V-doped Bi$_2$Se$_3$ exhibit AHE, Cr-doped Bi$_2$Se$_3$ has failed to exhibit even ferromagnetic AHE, the expected predecessor to the QAHE, though it is the first material predicted to exhibit the QAHE. Here, we have successfully implemented ferromagnetic AHE in Cr-doped Bi$_2$Se$_3$ thin films by utilizing a surface state engineering scheme. Surprisingly, the observed ferromagnetic AHE in the Cr-doped Bi$_2$Se$_3$ thin films exhibited only positive slope regardless of the carrier type. We show that this sign problem can be explained by the intrinsic Berry curvature of the system as calculated from a tight-binding model combined with a first-principles method.
The topological properties and intrinsic anomalous Hall effect of CsCl-type ferromagnets GdZn and GdCd have been studied based on first-principles electronic structure calculations. According to the calculated band structures, both GdZn and GdCd host nodal lines near the Fermi level. Once the magnetization breaks the mirror symmetries, the nodal lines are gapped. This can create a huge Berry curvature. A large anomalous Hall effect is then generated when the Fermi level resides within the opened gaps of the nodal lines. Our works indicate that GdZn and GdCd can provide a promising platform for exploring the interplay between topological property and magnetism.
Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetically-doped topological insulators or intrinsic magnetic topological insulator MnBi$_2$Te$_4$ by applying an external magnetic field. However, either the low observation temperature or the unexpected external magnetic field (tuning all MnBi$_2$Te$_4$ layers to be ferromagnetic) still hinders further application of QAHE. Here, we theoretically demonstrate that proper stacking of MnBi$_2$Te$_4$ and Sb$_2$Te$_3$ layers is able to produce intrinsically ferromagnetic van der Waals heterostructures to realize the high-temperature QAHE. We find that interlayer ferromagnetic transition can happen at $T_{rm C}=42~rm K$ when a five-quintuple-layer Sb$_2$Te$_3$ topological insulator is inserted into two septuple-layer MnBi$_2$Te$_4$ with interlayer antiferromagnetic coupling. Band structure and topological property calculations show that MnBi$_2$Te$_4$/Sb$_2$Te$_3$/MnBi$_2$Te$_4$ heterostructure exhibits a topologically nontrivial band gap around 26 meV, that hosts a QAHE with a Chern number of $mathcal{C}=1$. In addition, our proposed materials system should be considered as an ideal platform to explore high-temperature QAHE due to the fact of natural charge-compensation, originating from the intrinsic n-type defects in MnBi$_2$Te$_4$ and p-type defects in Sb$_2$Te$_3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا