ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional Growth and Fragmentation of Dust Aggregates with Low Mass Ratios. I: Critical Collision Velocity for Water Ice

27   0   0.0 ( 0 )
 نشر من قبل Yukihiko Hasegawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated fundamental processes of collisional sticking and fragmentation of dust aggregates by carrying out N-body simulations of submicron-sized icy dust monomers. We examined the condition for collisional growth of two colliding dust aggregates in a wide range of the mass ratio, 1-64. We found that the mass transfer from a larger dust aggregate to a smaller one is a dominant process in collisions with a mass ratio of 2-30 and impact velocity of approx 30-170 m s^-1. As a result, the critical velocity, v_fra, for fragmentation of the largest body is considerably reduced for such unequal-mass collisions; v_fra of collisions with a mass ratio of 3 is about half of that obtained from equal-mass collisions. The impact velocity is generally higher for collisions between dust aggregates with higher mass ratios because of the difference between the radial drift velocities in the typical condition of protoplanetary disks. Therefore, the reduced v_fra for unequal-mass collisions would delay growth of dust grains in the inner region of protoplanetary disks.



قيم البحث

اقرأ أيضاً

The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO$_2$ particles prepared into aggregates with sizes between 120~$mu$m and 250~$mu$m. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates ($sim$100 $mu$m) following the model of Dominik & Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 $mu$m-sized non-compacted aggregates.
The gas-driven dust activity of comets is still an unresolved question in cometary science. In the past, it was believed that comets are dirty snowballs and that the dust is ejected when the ice retreats. However, thanks to the various space missions to comets, it has become evident that comets have a much higher dust-to-ice ratio than previously thought and that most of the dust mass is ejected in large particles. Here we report on new comet-simulation experiments dedicated to the study of the ejection of dust aggregates caused by the sublimation of solid water ice. We find that dust ejection exactly occurs when the pressure of the water vapor above the ice surface exceeds the tensile strength plus the gravitational load of the covering dust layer. Furthermore, we observed the ejection of clusters of dust aggregates, whose sizes increase with increasing thickness of the ice-covering dust-aggregate layer. In addition, the trajectories of the ejected aggregates suggest that most of the aggregates obtained a non-vanishing initial velocity from the ejection event.
We present the implementation of a dust growth and fragmentation module in the public Smoothed Particle Hydrodynamics (SPH) code PHANTOM. This module is made available for public use with this paper. The coagulation model considers locally monodisper se dust size distributions around single values that are carried by the SPH particles. Along with the presentation of the model, implementation and tests, we showcase growth and fragmentation in a few typical circumstellar disc simulations and revisit previous results. The module is also interfaced with the radiative transfer code MCFOST, which facilitates the comparison between simulations and ALMA observations by generating synthetic maps. Circumstellar disc simulations with growth and fragmentation reproduce the `self-induced dust trap mechanism first proposed by Gonzalez et al., which supports its existence. Synthetic images of discs featuring this mechanism suggest it would be detectable by ALMA as a bright axisymmetric ring at several tens of au from the star. With this paper, our aim is to provide a public tool to be able to study and explore dust growth in a variety of applications related to planet formation.
The collisional and sticking properties of sub-mm-sized aggregates composed of protoplanetary dust analogue material are measured, including the statistical threshold velocity between sticking and bouncing, their surface energy and tensile strength w ithin aggregate clusters. We performed an experiment on the REXUS 12 suborbital rocket. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO2 particles prepared into aggregates with sizes around 120 $mu$m and 330 $mu$m, respectively and volume filling factors around 0.37. During the experimental run of 150 s under reduced gravity conditions, the sticking of aggregates and the formation and fragmentation of clusters of up to a few millimetres in size was observed. The sticking probability of the sub-mm-sized dust aggregates could be derived for velocities decreasing from 22 to 3 cm/s. The transition from bouncing to sticking collisions happened at 12.7 cm/s for the smaller aggregates composed of monodisperse particles and at 11.5 and 11.7 cm/s for the larger aggregates composed of mono- and polydisperse dust particles, respectively. Using the pull-off force of sub-mm-sized dust aggregates from the clusters, the surface energy of the aggregates composed of monodisperse dust was derived to be 1.6x10-5 J/m2, which can be scaled down to 1.7x10-2 J/m2 for the micrometre-sized monomer particles and is in good agreement with previous measurements for silica particles. The tensile strengths of these aggregates within the clusters were derived to be 1.9 Pa and 1.6 Pa for the small and large dust aggregates, respectively. These values are in good agreement with recent tensile strength measurements for mm-sized silica aggregates. Using our data on the sticking-bouncing threshold, estimates of the maximum aggregate size can be given. For a minimum mass solar nebula model, aggregates can reach sizes of 1 cm.
Models and observations suggest that ice-particle aggregation at and beyond the snowline dominates the earliest stages of planet-formation, which therefore is subject to many laboratory studies. However, the pressure-temperature gradients in proto-pl anetary disks mean that the ices are constantly processed, undergoing phase changes between different solid phases and the gas phase. Open questions remain as to whether the properties of the icy particles themselves dictate collision outcomes and therefore how effectively collision experiments reproduce conditions in pro- toplanetary environments. Previous experiments often yielded apparently contradictory results on collision outcomes, only agreeing in a temperature dependence setting in above $approx$ 210 K. By exploiting the unique capabilities of the NIMROD neutron scattering instrument, we characterized the bulk and surface structure of icy particles used in collision experiments, and studied how these structures alter as a function of temperature at a constant pressure of around 30 mbar. Our icy grains, formed under liquid nitrogen, undergo changes in the crystalline ice-phase, sublimation, sintering and surface pre-melting as they are heated from 103 to 247 K. An increase in the thickness of the diffuse surface layer from $approx$ 10 to $approx$ 30 {AA} ($approx$ 2.5 to 12 bilayers) proves increased molecular mobility at temperatures above $approx$ 210 K. As none of the other changes tie-in with the temperature trends in collisional outcomes, we conclude that the surface pre-melting phenomenon plays a key role in collision experiments at these temperatures. Consequently, the pressure-temperature environment, may have a larger influence on collision outcomes than previously thought.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا