ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Metrics from Mean Teacher: A Supervised Learning Method for Improving the Generalization of Speaker Verification System

81   0   0.0 ( 0 )
 نشر من قبل Juho Kim
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Most speaker verification tasks are studied as an open-set evaluation scenario considering the real-world condition. Thus, the generalization power to unseen speakers is of paramount important to the performance of the speaker verification system. We propose to apply textit {Mean Teacher}, a temporal averaging model, to extract speaker embeddings with small intra-class variance and large inter-class variance. The mean teacher network refers to the temporal averaging of deep neural network parameters; it can produces more accurate and stable representations than using weights after the training finished. By learning the reliable intermediate representation of the mean teacher network, we expect that the proposed method can explore more discriminatory embedding spaces and improve the generalization performance of the speaker verification system. Experimental results on the VoxCeleb1 test set demonstrate that the proposed method relatively improves performance by 11.61%, compared to a baseline system.



قيم البحث

اقرأ أيضاً

96 - Yafeng Chen , Wu Guo , Bin Gu 2021
Meta-learning (ML) has recently become a research hotspot in speaker verification (SV). We introduce two methods to improve the meta-learning training for SV in this paper. For the first method, a backbone embedding network is first jointly trained w ith the conventional cross entropy loss and prototypical networks (PN) loss. Then, inspired by speaker adaptive training in speech recognition, additional transformation coefficients are trained with only the PN loss. The transformation coefficients are used to modify the original backbone embedding network in the x-vector extraction process. Furthermore, the random erasing (RE) data augmentation technique is applied to all support samples in each episode to construct positive pairs, and a contrastive loss between the augmented and the original support samples is added to the objective in model training. Experiments are carried out on the Speaker in the Wild (SITW) and VOiCES databases. Both of the methods can obtain consistent improvements over existing meta-learning training frameworks. By combining these two methods, we can observe further improvements on these two databases.
In this work, we introduce metric learning (ML) to enhance the deep embedding learning for text-independent speaker verification (SV). Specifically, the deep speaker embedding network is trained with conventional cross entropy loss and auxiliary pair -based ML loss function. For the auxiliary ML task, training samples of a mini-batch are first arranged into pairs, then positive and negative pairs are selected and weighted through their own and relative similarities, and finally the auxiliary ML loss is calculated by the similarity of the selected pairs. To evaluate the proposed method, we conduct experiments on the Speaker in the Wild (SITW) dataset. The results demonstrate the effectiveness of the proposed method.
In this paper, we propose an iterative framework for self-supervised speaker representation learning based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding network by maximizing agreement between different segments within an utterance via a contrastive loss. Taking advantage of DNNs ability to learn from data with label noise, we propose to cluster the speaker embedding obtained from the previous speaker network and use the subsequent class assignments as pseudo labels to train a new DNN. Moreover, we iteratively train the speaker network with pseudo labels generated from the previous step to bootstrap the discriminative power of a DNN. Speaker verification experiments are conducted on the VoxCeleb dataset. The results show that our proposed iterative self-supervised learning framework outperformed previous works using self-supervision. The speaker network after 5 iterations obtains a 61% performance gain over the speaker embedding model trained with contrastive loss.
94 - Danwei Cai , Ming Li 2021
This report describes the submission of the DKU-DukeECE team to the self-supervision speaker verification task of the 2021 VoxCeleb Speaker Recognition Challenge (VoxSRC). Our method employs an iterative labeling framework to learn self-supervised sp eaker representation based on a deep neural network (DNN). The framework starts with training a self-supervision speaker embedding network by maximizing agreement between different segments within an utterance via a contrastive loss. Taking advantage of DNNs ability to learn from data with label noise, we propose to cluster the speaker embedding obtained from the previous speaker network and use the subsequent class assignments as pseudo labels to train a new DNN. Moreover, we iteratively train the speaker network with pseudo labels generated from the previous step to bootstrap the discriminative power of a DNN. Also, visual modal data is incorporated in this self-labeling framework. The visual pseudo label and the audio pseudo label are fused with a cluster ensemble algorithm to generate a robust supervisory signal for representation learning. Our submission achieves an equal error rate (EER) of 5.58% and 5.59% on the challenge development and test set, respectively.
Recently self-supervised learning has emerged as an effective approach to improve the performance of automatic speech recognition (ASR). Under such a framework, the neural network is usually pre-trained with massive unlabeled data and then fine-tuned with limited labeled data. However, the non-streaming architecture like bidirectional transformer is usually adopted by the neural network to achieve competitive results, which can not be used in streaming scenarios. In this paper, we mainly focus on improving the performance of streaming transformer under the self-supervised learning framework. Specifically, we propose a novel two-stage training method during fine-tuning, which combines knowledge distilling and self-training. The proposed training method achieves 16.3% relative word error rate (WER) reduction on Librispeech noisy test set. Finally, by only using the 100h clean subset of Librispeech as the labeled data and the rest (860h) as the unlabeled data, our streaming transformer based model obtains competitive WERs 3.5/8.7 on Librispeech clean/noisy test sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا