ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the dominance of the gradient drift or Kelvin-Helmholtz instability in sheared ionospheric E x B flows

67   0   0.0 ( 0 )
 نشر من قبل Chirag Rathod
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies have shown that in sheared $mathbf{E}timesmathbf{B}$ flows in an inhomogeneous ionospheric plasma, the gradient drift (GDI) or the Kelvin-Helmholtz (KHI) instability may grow. This work examines the conditions that cause one of these instabilities to dominate over the other using a novel model to study localized ionospheric instabilities. The effect of collisions with neutral particles plays an important role in the instability development. It is found that the KHI is dominant in low collisionality regimes, the GDI is dominant in high collisionality regimes, and there exists an intermediate region in which both instabilities exist in tandem. For low collisionality cases in which the velocity shear is sufficiently far from the density gradient, the GDI is found to grow as a secondary instability extending from the KHI vortices. The inclusion of a neutral wind driven electric field in the direction of the velocity shear does not impact the dominance of either instability. Using data from empirical ionospheric models, two altitude limits are found. For altitudes above the higher limit, the KHI is dominant. For altitudes below the lower limit, the GDI is dominant. In the intermediate region, both instabilities grow together. Increasing the velocity shear causes both limits to be lower in altitude. This implies that for ionospheric phenomena whose density and velocity gradients span large altitude ranges, such as subauroral polarization streams, the instabilities observed by space-based and ground-based observation instruments could be significantly different.

قيم البحث

اقرأ أيضاً

The Kelvin-Helmholtz (KH) instability is commonly found in many astrophysical, laboratory, and space plasmas. It could mix plasma components of different properties and convert dynamic fluid energy from large scale structure to smaller ones. In this study, we combined the ground-based New Vacuum Solar Telescope (NVST) and the Solar Dynamic Observatories (SDO) / Atmospheric Imaging Assembly (AIA) to observe the plasma dynamics associated with active region 12673 on 09 September 2017. In this multi-temperature view, we identified three adjacent layers of plasma flowing at different speeds, and detected KH instabilities at their interfaces. We could unambiguously track a typical KH vortex and measure its motion. We found that the speed of this vortex suddenly tripled at a certain stage. This acceleration was synchronized with the enhancements in emission measure and average intensity of the 193 AA{} data. We interpret this as evidence that KH instability triggers plasma heating. The intriguing feature in this event is that the KH instability observed in the NVST channel was nearly complementary to that in the AIA 193 AA{}. Such a multi-thermal energy exchange process is easily overlooked in previous studies, as the cold plasma component is usually not visible in the extreme ultraviolet channels that are only sensitive to high temperature plasma emissions. Our finding indicates that embedded cold layers could interact with hot plasma as invisible matters. We speculate that this process could occur at a variety of length scales and could contribute to plasma heating.
The Kelvin-Helmholtz (KH) instability is studied in a non-Newtonian dusty plasma with an experimentally verified model [Phys. Rev. Lett. {bf 98}, 145003 (2007)] of shear flow rate dependent viscosity. The shear flow profile used here is a parabolic t ype bounded flow. Both the shear thinning and shear thickening properties are investigated in compressible as well as incompressible limits using a linear stability analysis. Like the stabilizing effect of compressibility on the KH instability, the non-Newtonian effect in shear thickening regime could also suppress the instability but on the contrary, shear thinning property enhances it. A detailed study is reported on the role of non-Newtonian effect on KH instability with conventional dust fluid equations using standard eigenvalue analysis.
The description of the local turbulent energy transfer, and the high-resolution ion distributions measured by the Magnetospheric Multiscale mission, together provide a formidable tool to explore the cross-scale connection between the fluid-scale ener gy cascade and plasma processes at sub-ion scales. When the small-scale energy transfer is dominated by Alfvenic, correlated velocity and magnetic field fluctuations, beams of accelerated particles are more likely observed. Here, for the first time we report observations suggesting the nonlinear wave-particle interaction as one possible mechanism for the energy dissipation in space plasmas.
We investigate the effects of viscosity and heat conduction on the onset and growth of Kelvin-Helmholtz instability (KHI) via an efficient discrete Boltzmann model. Technically, two effective approaches are presented to quantitatively analyze and und erstand the configurations and kinetic processes. One is to determine the thickness of mixing layers through tracking the distributions and evolutions of the thermodynamic nonequilibrium (TNE) measures; the other is to evaluate the growth rate of KHI from the slopes of morphological functionals. Physically, it is found that the time histories of width of mixing layer, TNE intensity, and boundary length show high correlation and attain their maxima simultaneously. The viscosity effects are twofold, stabilize the KHI, and enhance both the local and global TNE intensities. Contrary to the monotonically inhibiting effects of viscosity, the heat conduction effects firstly refrain then enhance the evolution afterwards. The physical reasons are analyzed and presented.
The nonlinear evolution of collisionless plasmas is typically a multi-scale process where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account t he main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic, Hall-MHD, two-fluid, hybrid kinetic and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligable in the nonlinear regime. This study show that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the colisionless regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا