ﻻ يوجد ملخص باللغة العربية
Given a metric space, the $(k,z)$-clustering problem consists of finding $k$ centers such that the sum of the of distances raised to the power $z$ of every point to its closest center is minimized. This encapsulates the famous $k$-median ($z=1$) and $k$-means ($z=2$) clustering problems. Designing small-space sketches of the data that approximately preserves the cost of the solutions, also known as emph{coresets}, has been an important research direction over the last 15 years. In this paper, we present a new, simple coreset framework that simultaneously improves upon the best known bounds for a large variety of settings, ranging from Euclidean space, doubling metric, minor-free metric, and the general metric cases.
Let $P$ be a set (called points), $Q$ be a set (called queries) and a function $ f:Ptimes Qto [0,infty)$ (called cost). For an error parameter $epsilon>0$, a set $Ssubseteq P$ with a emph{weight function} $w:P rightarrow [0,infty)$ is an $epsilon$-co
Given a point set $Psubset mathbb{R}^d$, a kernel density estimation for Gaussian kernel is defined as $overline{mathcal{G}}_P(x) = frac{1}{left|Pright|}sum_{pin P}e^{-leftlVert x-p rightrVert^2}$ for any $xinmathbb{R}^d$. We study how to construct a
Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup ov
While marketing budget allocation has been studied for decades in traditional business, nowadays online business brings much more challenges due to the dynamic environment and complex decision-making process. In this paper, we present a novel unified
In this paper we provide a general framework for estimating symmetric properties of distributions from i.i.d. samples. For a broad class of symmetric properties we identify the easy region where empirical estimation works and the difficult region whe