ﻻ يوجد ملخص باللغة العربية
In matrix theory, a well established relation $(AB)^{T}=B^{T}A^{T}$ holds for any two matrices $A$ and $B$ for which the product $AB$ is defined. Here $T$ denote the usual transposition. In this work, we explore the possibility of deriving the matrix equality $(AB)^{Gamma}=A^{Gamma}B^{Gamma}$ for any $4 times 4$ matrices $A$ and $B$, where $Gamma$ denote the partial transposition. We found that, in general, $(AB)^{Gamma} eq A^{Gamma}B^{Gamma}$ holds for $4 times 4$ matrices $A$ and $B$ but there exist particular set of $4 times 4$ matrices for which $(AB)^{Gamma}= A^{Gamma}B^{Gamma}$ holds. We have exploited this matrix equality to investigate the separability problem. Since it is possible to decompose the density matrices $rho$ into two positive semi-definite matrices $A$ and $B$ so we are able to derive the separability condition for $rho$ when $rho^{Gamma}=(AB)^{Gamma}=A^{Gamma}B^{Gamma}$ holds. Due to the non-uniqueness property of the decomposition of the density matrix into two positive semi-definte matrices $A$ and $B$, there is a possibility to generalise the matrix equality for density matrices lives in higher dimension. These results may help in studying the separability problem for higher dimensional and multipartite system.
We study matrix identities involving multiplication and unary operations such as transposition or Moore-Penrose inversion. We prove that in many cases such identities admit no finite basis.
Exploiting the cone structure of the set of unnormalized mixed quantum states, we offer an approach to detect separability independently of the dimensions of the subsystems. We show that any mixed quantum state can be decomposed as $rho=(1-lambda)C_{
Let $A$ be an $mtimes m$ positive semidefinite block matrix with each block being $n$-square. We write $mathrm{tr}_1$ and $mathrm{tr}_2$ for the first and second partial trace, respectively. In this note, we prove the following inequality [ (mathrm{t
The problem of constructing a necessary and sufficient condition for establishing the separability of continuous variable systems is revisited. Simon [R. Simon, Phys. Rev. Lett. 84, 2726 (2000)] pointed out that such a criterion may be constructed by
We present a review of the problem of finding out whether a quantum state of two or more parties is entangled or separable. After a formal definition of entangled states, we present a few criteria for identifying entangled states and introduce some e