ﻻ يوجد ملخص باللغة العربية
In this paper, let $(mathcal{A},mathcal{B},mathcal{C})$ be a recollement of extriangulated categories. We introduce the global dimension and extension dimension of extriangulated categories, and give some upper bounds of global dimensions (resp. extension dimensions) of the categories involved in $(mathcal{A},mathcal{B},mathcal{C})$, which give a simultaneous generalization of some results in the recollement of abelian categories and triangulated categories.
In this article, we prove that if $(mathcal A ,mathcal B,mathcal C)$ is a recollement of extriangulated categories, then torsion pairs in $mathcal A$ and $mathcal C$ can induce torsion pairs in $mathcal B$, and the converse holds under natural assump
A notion of balanced pairs in an extriangulated category with a negative first extension is defined in this article. We prove that there exists a bijective correspondence between balanced pairs and proper classes $xi$ with enough $xi$-projectives and
We introduce pre-silting and silting subcategories in extriangulated categories and generalize the silting theory in triangulated categories. We prove that the silting reduction $mathcal B/({rm thick}mathcal W)$ of an extriangulated category $mathcal
It was shown recently that the heart of a twin cotorsion pair on an extriangulated category is semi-abelian. In this article, we consider a special kind of hearts of twin cotorsion pairs induced by $d$-cluster tilting subcategories in extriangulated
In this paper, we first provide an explicit procedure to glue complete hereditary cotorsion pairs along the recollement $(mathcal{A},mathcal{C},mathcal{B})$ of abelian categories with enough projective and injective objects. As a consequence, we inve