ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiscale modeling of materials: Computing, data science,uncertainty and goal-oriented optimization

71   0   0.0 ( 0 )
 نشر من قبل Burigede Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent decades have seen various attempts at accelerating the process of developing materials targeted towards specific applications. The performance required for a particular application leads to the choice of a particular material system whose properties are optimized by manipulating its underlying microstructure through processing. The specific configuration of the structure is then designed by characterizing the material in detail, and using this characterization along with physical principles in system level simulations and optimization. These have been advanced by multiscale modeling of materials, high-throughput experimentations, materials data-bases, topology optimization and other ideas. Still, developing materials for extreme applications involving large deformation, high strain rates and high temperatures remains a challenge. This article reviews a number of recent methods that advance the goal of designing materials targeted by specific applications.

قيم البحث

اقرأ أيضاً

The development of new materials and structures for extreme conditions including impact remains a continuing challenge despite steady advances. Design is currently accomplished using a sequential approach: an optimal material is first developed using the process-structure-properties paradigm, where performance is measured against a blended measure. Then, the structure is optimized while holding the material properties fixed. In this paper, we propose an alternative concurrent and goal-oriented optimization approach where both the material properties and the structure are optimized simultaneously against an overall system-wide performance measure. We develop a non-intrusive, high-performance computational framework based on DAKOTA and GMSH and use it to study the ballistic impact of a double-layer plate of strong AZ31B magnesium alloy and soft polyurea. We show that the proposed concurrent and goal-oriented optimization strategy can provide significant advantage over the traditional sequential optimization approach.
Combinatorial experiments involve synthesis of sample libraries with lateral composition gradients requiring spatially-resolved characterization of structure and properties. Due to maturation of combinatorial methods and their successful application in many fields, the modern combinatorial laboratory produces diverse and complex data sets requiring advanced analysis and visualization techniques. In order to utilize these large data sets to uncover new knowledge, the combinatorial scientist must engage in data science. For data science tasks, most laboratories adopt common-purpose data management and visualization software. However, processing and cross-correlating data from various measurement tools is no small task for such generic programs. Here we describe COMBIgor, a purpose-built open-source software package written in the commercial Igor Pro environment, designed to offer a systematic approach to loading, storing, processing, and visualizing combinatorial data sets. It includes (1) methods for loading and storing data sets from combinatorial libraries, (2) routines for streamlined data processing, and (3) data analysis and visualization features to construct figures. Most importantly, COMBIgor is designed to be easily customized by a laboratory, group, or individual in order to integrate additional instruments and data-processing algorithms. Utilizing the capabilities of COMBIgor can significantly reduce the burden of data management on the combinatorial scientist.
In the field of machine learning (ML) for materials optimization, active learning algorithms, such as Bayesian Optimization (BO), have been leveraged for guiding autonomous and high-throughput experimentation systems. However, very few studies have e valuated the efficiency of BO as a general optimization algorithm across a broad range of experimental materials science domains. In this work, we evaluate the performance of BO algorithms with a collection of surrogate model and acquisition function pairs across five diverse experimental materials systems, namely carbon nanotube polymer blends, silver nanoparticles, lead-halide perovskites, as well as additively manufactured polymer structures and shapes. By defining acceleration and enhancement metrics for general materials optimization objectives, we find that for surrogate model selection, Gaussian Process (GP) with anisotropic kernels (automatic relevance detection, ARD) and Random Forests (RF) have comparable performance and both outperform the commonly used GP without ARD. We discuss the implicit distributional assumptions of RF and GP, and the benefits of using GP with anisotropic kernels in detail. We provide practical insights for experimentalists on surrogate model selection of BO during materials optimization campaigns.
In Goal-oriented Reinforcement learning, relabeling the raw goals in past experience to provide agents with hindsight ability is a major solution to the reward sparsity problem. In this paper, to enhance the diversity of relabeled goals, we develop F GI (Foresight Goal Inference), a new relabeling strategy that relabels the goals by looking into the future with a learned dynamics model. Besides, to improve sample efficiency, we propose to use the dynamics model to generate simulated trajectories for policy training. By integrating these two improvements, we introduce the MapGo framework (Model-Assisted Policy Optimization for Goal-oriented tasks). In our experiments, we first show the effectiveness of the FGI strategy compared with the hindsight one, and then show that the MapGo framework achieves higher sample efficiency when compared to model-free baselines on a set of complicated tasks.
Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncer tainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا