ﻻ يوجد ملخص باللغة العربية
Improving the image resolution and acquisition speed of magnetic resonance imaging (MRI) is a challenging problem. There are mainly two strategies dealing with the speed-resolution trade-off: (1) $k$-space undersampling with high-resolution acquisition, and (2) a pipeline of lower resolution image reconstruction and image super-resolution. However, these approaches either have limited performance at certain high acceleration factor or suffer from the error accumulation of two-step structure. In this paper, we combine the idea of MR reconstruction and image super-resolution, and work on recovering HR images from low-resolution under-sampled $k$-space data directly. Particularly, the SR-involved reconstruction can be formulated as a variational problem, and a learnable network unrolled from its solution algorithm is proposed. A discriminator was introduced to enhance the detail refining performance. Experiment results using in-vivo HR multi-coil brain data indicate that the proposed SRR-Net is capable of recovering high-resolution brain images with both good visual quality and perceptual quality.
Purpose: To improve image quality and accelerate the acquisition of 3D MRF. Methods: Building on the multi-axis spiral-projection MRF technique, a subspace reconstruction with locally low rank (LLR) constraint and a modified spiral-projection spatiot
Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or bio
This work presents a new super-resolution imaging approach by using subwavelength hole resonances. We employ a subwavelength structure in which an array of tiny holes are etched in a metallic slab with the neighboring distance $ell$ that is smaller t
In this paper, we propose a novel reference based image super-resolution approach via Variational AutoEncoder (RefVAE). Existing state-of-the-art methods mainly focus on single image super-resolution which cannot perform well on large upsampling fact
Face super-resolution (SR) has become an indispensable function in security solutions such as video surveillance and identification system, but the distortion in facial components is a great challenge in it. Most state-of-the-art methods have utilize