ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dynamic Response Recovery Framework Using Ambient Synchrophasor Data

69   0   0.0 ( 0 )
 نشر من قبل Shaohui Liu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Wide-area dynamic studies are of paramount importance to ensure the stability and reliability of power grids. The rising deployment synchrophasor and other sensing technologies has made data-driven modeling and analysis possible using the synchronized fast-rate dynamic measurements. This paper presents a general model-free framework of inferring the grid dynamic responses using the ubiquitous ambient data collected during normal grid operations. Building upon the second-order dynamic model, we have established the connection from the cross-correlation of various types of angle, frequency, and line flow data at any two locations, to their corresponding dynamic responses. The theoretical results enabled a fully data-driven framework for estimating the latter using real-time ambient data. Numerical results using the WSCC 9-bus system and a synthetic 2000-bus Texas system have demonstrated the effectiveness of proposed approaches for dynamic modeling of realistic power systems.



قيم البحث

اقرأ أيضاً

183 - Wenbo Wang , Xin Fang , Hantao Cui 2021
The rapid deployment of distributed energy resources (DERs) in distribution networks has brought challenges to balance the system and stabilize frequency. DERs have the ability to provide frequency regulation; however, existing dynamic frequency simu lation tools-which were developed mainly for the transmission system-lack the capability to simulate distribution network dynamics with high penetrations of DERs. Although electromagnetic transient (EMT) simulation tools can simulate distribution network dynamics, the computation efficiency limits their use for large-scale transmission-and-distribution (T&D) simulations. This paper presents an efficient T&D dynamic frequency co-simulation framework for DER frequency response based on the HELICS platform and existing off-the-shelf simulators. The challenge of synchronizing frequency between the transmission network and DERs hosted in the distribution network is approached by detailed modeling of DERs in frequency dynamic models while DER phasor models are also preserved in the distribution networks. Thereby, local voltage constraints can be respected when dispatching the DER power for frequency response. The DER frequency responses (primary and secondary)-are simulated in case studies to validate the proposed framework. Lastly, fault-induced delayed voltage recovery (FIDVR) event of a large system is presented to demonstrate the efficiency and effectiveness of the overall framework.
93 - Yang Li , Bin Wang , Zhen Yang 2021
The community integrated energy system (CIES) is an essential energy internet carrier that has recently been the focus of much attention. A scheduling model based on chance-constrained programming is proposed for integrated demand response (IDR)-enab led CIES in uncertain environments to minimize the system operating costs, where an IDR program is used to explore the potential interaction ability of electricity-gas-heat flexible loads and electric vehicles. Moreover, power to gas (P2G) and micro-gas turbine (MT), as links of multi-energy carriers, are adopted to strengthen the coupling of different energy subsystems. Sequence operation theory (SOT) and linearization methods are employed to transform the original model into a solvable mixed-integer linear programming model. Simulation results on a practical CIES in North China demonstrate an improvement in the CIES operational economy via the coordination of IDR and renewable uncertainties, with P2G and MT enhancing the system operational flexibility and user comprehensive satisfaction. The CIES operation is able to achieve a trade-off between economy and system reliability by setting a suitable confidence level for the spinning reserve constraints. Besides, the proposed solution method outperforms the Hybrid Intelligent Algorithm in terms of both optimization results and calculation efficiency.
164 - Yang Li , Meng Han , Zhen Yang 2021
A community integrated energy system (CIES) with an electric vehicle charging station (EVCS) provides a new way for tackling growing concerns of energy efficiency and environmental pollution, it is a critical task to coordinate flexible demand respon se and multiple renewable uncertainties. To this end, a novel bi-level optimal dispatching model for the CIES with an EVCS in multi-stakeholder scenarios is established in this paper. In this model, an integrated demand response program is designed to promote a balance between energy supply and demand while maintaining a user comprehensive satisfaction within an acceptable range. To further tap the potential of demand response through flexibly guiding users energy consumption and electric vehicles behaviors (charging, discharging and providing spinning reserves), a dynamic pricing mechanism combining time-of-use and real-time pricing is put forward. In the solution phase, by using sequence operation theory (SOT), the original chance-constrained programming (CCP) model is converted into a readily solvable mixed-integer linear programming (MILP) formulation and finally solved by CPLEX solver. The simulation results on a practical CIES located in North China demonstrate that the presented method manages to balance the interests between CIES and EVCS via the coordination of flexible demand response and uncertain renewables.
The need for Enhanced Frequency Response (EFR) is expected to increase significantly in future low-carbon Great Britain (GB) power system. One way to provide EFR is to use power electronic compensators (PECs) for point-of-load voltage control (PVC) t o exploit the voltage dependence of loads. This paper investigates the techno-economic feasibility of such technology in future GB power system by quantifying the total EFR obtainable through deploying PVC in the urban domestic sector, the investment cost of the installment and the economic and environmental benefits of using PVC. The quantification is based on a stochastic domestic demand model and generic medium and low-voltage distribution networks for the urban areas of GB and a stochastic unit commitment (SUC) model with constraints for secure post-fault frequency evolution is used for the value assessment. Two future energy scenarios in the backdrop of 2030 with `smart and `non-smart control of electric vehicles and heat pumps, under different levels of penetration of battery energy storage system (BESS) are considered to assess the value of PEC, as well as the associated payback period. It is demonstrated that PVC could effectively complement BESS towards EFR provision in future GB power system.
The occurrence of voltage violations are a major deterrent for absorbing more roof-top solar power to smart Low Voltage Distribution Grids (LVDG). Recent studies have focused on decentralized control methods to solve this problem due to the high comp utational time in performing load flows in centralized control techniques. To address this issue a novel sensitivity matrix is developed to estimate voltages of the network by replacing load flow simulations. In this paper, a Centralized Active, Reactive Power Management System (CARPMS) is proposed to optimally utilize the reactive power capability of smart photo-voltaic inverters with minimal active power curtailment to mitigate the voltage violation problem. The developed sensitivity matrix is able to reduce the time consumed by 48% compared to load flow simulations, enabling near real-time control optimization. Given the large solution space of power systems, a novel two-stage optimization is proposed, where the solution space is narrowed down by a Feasible Region Search (FRS) step, followed by Particle Swarm Optimization (PSO). The performance of the proposed methodology is analyzed in comparison to the load flow method to demonstrate the accuracy and the capability of the optimization algorithm to mitigate voltage violations in near real-time. The deviation of mean voltages of the proposed methodology from load flow method was; 6.5*10^-3 p.u for reactive power control using Q-injection, 1.02*10^-2 p.u for reactive power control using Q-absorption, and 0 p.u for active power curtailment case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا