ترغب بنشر مسار تعليمي؟ اضغط هنا

East Asian VLBI Network Observations of Active Galactic Nuclei Jets: Imaging with KaVA+Tianma+Nanshan

112   0   0.0 ( 0 )
 نشر من قبل Yuzhu Cui
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The East Asian very-long-baseline interferometry (VLBI) Network (EAVN) is a rapidly evolving international VLBI array that is currently promoted under joint efforts among China, Japan, and Korea. EAVN aims at forming a joint VLBI Network by combining a large number of radio telescopes distributed over East Asian regions. After the combination of the Korean VLBI Network (KVN) and the VLBI Exploration of Radio Astrometry (VERA) into KaVA, further expansion with the joint array in East Asia is actively promoted. Here we report the first imaging results (at 22 and 43 GHz) of bright radio sources obtained with KaVA connected to Tianma 65-m and Nanshan 26-m Radio Telescopes in China. To test the EAVN imaging performance for different sources, we observed four active galactic nuclei (AGN) having different brightness and morphology. As a result, we confirmed that Tianma 65-m Radio Telescope (TMRT) significantly enhances the overall array sensitivity, a factor of 4 improvement in baseline sensitivity and 2 in image dynamic range compared to the case of KaVA only. The addition of Nanshan 26-m Radio Telescope (NSRT) further doubled the east-west angular resolution. With the resulting high-dynamic-range, high-resolution images with EAVN (KaVA+TMRT+NSRT), various fine-scale structures in our targets, such as the counter-jet in M87, a kink-like morphology of the 3C273 jet and the weak emission in other sources, are successfully detected. This demonstrates the powerful capability of EAVN to study AGN jets and to achieve other science goals in general. Ongoing expansion of EAVN will further enhance the angular resolution, detection sensitivity and frequency coverage of the network.

قيم البحث

اقرأ أيضاً

The Korean very-long-baseline interferometry (VLBI) network (KVN) and VLBI Exploration of Radio Astrometry (VERA) Array (KaVA) is the first international VLBI array dedicated to high-frequency (23 and 43 GHz bands) observations in East Asia. Here, we report the first imaging observations of three bright active galactic nuclei (AGNs) known for their complex morphologies: 4C 39.25, 3C 273, and M 87. This is one of the initial result of KaVA early science. Our KaVA images reveal extended outflows with complex substructure such as knots and limb brightening, in agreement with previous Very Long Baseline Array (VLBA) observations. Angular resolutions are better than 1.4 and 0.8 milliarcsecond at 23 GHz and 43 GHz, respectively. KaVA achieves a high dynamic range of ~1000, more than three times the value achieved by VERA. We conclude that KaVA is a powerful array with a great potential for the study of AGN outflows, at least comparable to the best existing radio interferometric arrays.
Over the past few decades, our knowledge of jets produced by active galactic nuclei (AGN) has greatly progressed thanks to the development of very-long-baseline interferometry (VLBI). Nevertheless, the crucial mechanisms involved in the formation of the plasma flow, as well as those driving its exceptional radiative output up to TeV energies, remain to be clarified. Most likely, these physical processes take place at short separations from the supermassive black hole, on scales which are inaccessible to VLBI observations at centimeter wavelengths. Due to their high synchrotron opacity, the dense and highly magnetized regions in the vicinity of the central engine can only be penetrated when observing at shorter wavelengths, in the millimeter and sub-millimeter regimes. While this was recognized already in the early days of VLBI, it was not until the very recent years that sensitive VLBI imaging at high frequencies has become possible. Ongoing technical development and wide band observing now provide adequate imaging fidelity to carry out more detailed analyses. In this article we overview some open questions concerning the physics of AGN jets, and we discuss the impact of mm-VLBI studies. Among the rich set of results produced so far in this frequency regime, we particularly focus on studies performed at 43 GHz (7 mm) and at 86 GHz (3 mm). Some of the first findings at 230 GHz (1 mm) obtained with the Event Horizon Telescope are also presented.
We present an update of the parsec scale properties of the Bologna Complete Sample consisting of 95 radio sources from the B2 Catalog of Radio Sources and the Third Cambridge Revised Catalog (3CR), with z < 0.1. Thanks to recent new data we have now parsec scale images for 76 sources of the sample. Most of them show a one-sided jet structure but we find a higher fraction of two-sided sources in comparison with previous flux-limited VLBI surveys. A few peculiar sources are presented and discussed in more detail.
We present deep Near-infrared (NIR) images of a sample of 19 intermediate-redshift ($0.3<z<1.0$) radio-loud active galactic nuclei (AGN) with powerful relativistic jets ($L_{1.4GHz} >10^{27}$ WHz$^{-1}$), previously classified as flat-spectrum radio quasars. We also compile host galaxy and nuclear magnitudes for blazars from literature. The combined sample (this work and compilation) contains 100 radio-loud AGN with host galaxy detections and a broad range of radio luminosities $L_{1.4GHz} sim 10^{23.7} - 10^{28.3}$~WHz$^{-1}$, allowing us to divide our sample into high-luminosity blazars (HLBs) and low-luminosity blazars (LLBs). The host galaxies of our sample are bright and seem to follow the $mu_{e}$-$R_{eff}$ relation for ellipticals and bulges. The two populations of blazars show different behaviours in the mnuc - mbulge plane, where a statistically significant correlation is observed for HLBs. Although it may be affected by selection effects, this correlation suggests a close coupling between the accretion mode of the central supermassive black hole and its host galaxy, that could be interpreted in terms of AGN feedback. Our findings are consistent with semi--analytical models where low--luminosity AGN emit the bulk of their energy in the form of radio jets, producing a strong feedback mechanism, and high--luminosity AGN are affected by galaxy mergers and interactions, which provide a common supply of cold gas to feed both nuclear activity and star formation episodes.
140 - Y. Y. Kovalev 2008
A review is given on the current status and selected results from large VLBI surveys of compact extragalactic radio sources made between 13 cm and 3 mm wavelengths and covering the entire sky. More than 4200 objects are observed and imaged with dynam ic ranges from a hundred to several thousand at (sub)parsec scales. Implications to the VSOP-2 project are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا