ﻻ يوجد ملخص باللغة العربية
Optical metasurfaces have been extensively investigated, demonstrating diverse and multiple functionalities with complete control over the transmitted and reflected fields. Most optical metasurfaces are however static, with only a few configurations offering (rather limited) electrical control, thereby jeopardizing their application prospects in emerging flat optics technologies. Here, we suggest an approach to realize electrically tunable optical metasurfaces, demonstrating dynamic Fresnel lens focusing. The active Fresnel lens (AFL) exploits the electro-optic Pockels effect in a 300-nm-thick lithium niobate layer sandwiched between a continuous thick and nanostructured gold film serving as electrodes. We fabricate and characterize the AFL, focusing 800-900 nm radiation at the distance of 40 $mathrm{mu}$m with the focusing efficiency of 15 % and demonstrating the modulation depth of 1.5 % with the driving voltage of $pm 10$ V within the bandwidth of $sim! 4$ MHz. We believe that the electro-optic metasurface concept introduced is useful for designing dynamic flat optics components.
When a monochromatic electromagnetic plane-wave arrives at the flat interface between its transparent host (i.e., the incidence medium) and an amplifying (or gainy) second medium, the incident beam splits into a reflected wave and a transmitted wave.
Group-IV color centers in diamond have attracted significant attention as solid-state spin qubits because of their excellent optical and spin properties. Among these color centers, the tin-vacancy (SnV$^{,textrm{-}}$) center is of particular interest
The conventional lenss tunability drawback always restricts their application compared to the metasurface lens (metalens). On the other side, reconfigurable metalenses offer the benefits of ultrathin thickness and capable of tunability. Therefore ach
Hybrid dielectric metasurfaces have emerged as a promising approach to enhancing near field confinement and thus achieving high optical nonlinearity using low loss dielectrics. Additional flexibility in design and fabrication of hybrid metasurfaces a
Layered two-dimensional (2D) materials provide a wide range of unique properties as compared to their bulk counterpart, making them ideal for heterogeneous integration for on-chip interconnects. Hence, a detailed understanding of the loss and index c