ﻻ يوجد ملخص باللغة العربية
In this work, we address the important question of adaptability of artificial neural networks (NNs) used for impairment mitigation in optical transmission systems. We demonstrate that by using well-developed techniques based on the concept of transfer learning, we can efficaciously retrain NN-based equalizers to adapt changes in the transmission system using just a fraction of the initial training data and epochs. We evaluate the potential of transfer learning to adapt the NN to changes in the launch powers, modulation formats, symbol rates, or even fiber plants (different fiber types and lengths). The numerical examples utilize the recently introduced NN equalizer consisting of a convolutional layer coupled with bi-directional long-short term memory (biLSTM) recurrent NN element. Our analysis focuses on long-haul coherent optical transmission systems for two types of fibers: the standard single-mode fiber (SSMF) and the TrueWave Classic (TWC) fiber. We underline the specific peculiarities that occur when transferring the learning in coherent optical communication systems and draw the limits for the transfer learning efficiency. Our results demonstrate the effectiveness of transfer learning for the fast adaptation of NN architectures to different transmission regimes and scenarios, paving the way for engineering flexible and universal solutions for nonlinearity mitigation.
Transfer learning is proposed to adapt an NN-based nonlinear equalizer across different launch powers and modulation formats using a 450km TWC-fiber transmission. The result shows up to 92% reduction in epochs or 90% in the training dataset.
We present the results of the comparative analysis of the performance versus complexity for several types of artificial neural networks (NNs) used for nonlinear channel equalization in coherent optical communication systems. The comparison has been c
We propose a convolutional-recurrent channel equalizer and experimentally demonstrate 1dB Q-factor improvement both in single-channel and 96 x WDM, DP-16QAM transmission over 450km of TWC fiber. The new equalizer outperforms previous NN-based approaches and a 3-steps-per-span DBP.
A joint frame and carrier frequency synchronization algorithm for coherent optical systems, based on the digital computation of the fractional Fourier transform (FRFT), is proposed. The algorithm utilizes the characteristics of energy centralization
An intelligent optical performance monitor using multi-task learning based artificial neural network (MTL-ANN) is designed for simultaneous OSNR monitoring and modulation format identification (MFI). Signals amplitude histograms (AHs) after constant