ﻻ يوجد ملخص باللغة العربية
We prove bounds for the volume of neighborhoods of algebraic sets, in the euclidean space or the sphere, in terms of the degree of the defining polynomials, the number of variables and the dimension of the algebraic set, without any smoothness assumption. This generalizes previous work of Lotz on smooth complete intersections in the euclidean space and of Burgisser, Cucker and Lotz on hypersurfaces in the sphere, and gives a complete solution to Problem 17 in the book titled Condition by Burgisser and Cucker.
In this note, we propose a method to under-approximate finite-time reachable sets and tubes for a class of continuous-time linear uncertain systems. The class under consideration is the linear time-varying (LTV) class with integrable time-varying sys
Let $Ssubset R^n$ be a compact basic semi-algebraic set defined as the real solution set of multivariate polynomial inequalities with rational coefficients. We design an algorithm which takes as input a polynomial system defining $S$ and an integer $
Let $k$ be a field of characteristic zero containing all roots of unity and $K=k((t))$. We build a ring morphism from the Grothendieck group of semi-algebraic sets over $K$ to the Grothendieck group of motives of rigid analytic varieties over $K$. It
Given any arbitrary semi-algebraic set $X$, any two points in $X$ may be joined by a piecewise $C^2$ path $gamma$ of shortest length. Suppose $mathcal{A}$ is a semi-algebraic stratification of $X$ such that each component of $gamma cap mathcal{A}$ is
Let $ Y subseteq Bbb P^N $ be a possibly singular projective variety, defined over the field of complex numbers. Let $X$ be the intersection of $Y$ with $h$ general hypersurfaces of sufficiently large degrees. Let $d>0$ be an integer, and assume that