ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffraction as scattering under the Born approximation

711   0   0.0 ( 0 )
 نشر من قبل Neha Goswami
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light diffraction at an aperture is a basic problem that has generated a tremendous amount of interest in optics. Some of the most significant diffraction results are the Fresnel-Kirchhoff and Rayleigh-Sommerfeld formulas. These theories are based on solving the wave equation using Greens theorem and result in slightly different expressions depending on the particular boundary conditions employed. In this paper, we propose another approach for solving the diffraction by a thin screen, which includes apertures, gratings, transparencies etc. We show that, applying the first order Born approximation to 2D objects, we obtain a general diffraction formula, without angular approximations. We discuss several common approximations and place our results in the context of existing theories.



قيم البحث

اقرأ أيضاً

Light scattering is one of the most important elementary processes in near-field optics. We build up the Born series for scattering by dielectric bodies with step boundaries. The Green function for a 2-dimensional homogeneous dielectric cylinder is o btained. As an example, the formulas are derived for scattered field of two parallel cylinders. The polar diagram is shown to agree with numerical calculation by the known methods of discrete dipoles and boundary elements.
We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelera ting beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.
84 - Moosung Lee , Herve Hugonnet , 2021
The inverse scattering problem, whose goal is to reconstruct an unknown scattering object from its scattered wave, is essential in fundamental wave physics and its wide applications in imaging sciences. However, it remains challenging to invert multi ple scattering accurately and efficiently. Here, we exploit the modified Born series to demonstrate an inverse problem solver that efficiently and directly computes inverse multiple scattering without making any assumptions. The inversion process is based on a physically intuitive approach and can be easily extended to other exact forward solvers. We utilised the proposed method in optical diffraction tomography and numerically and experimentally demonstrated three-dimensional reconstruction of optically thick specimens with higher fidelity than those obtained using conventional methods based on the weak scattering approximation.
Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Greens functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.
Measurements of elastic electron scattering data within the past decade have highlighted two-photon exchange contributions as a necessary ingredient in theoretical calculations to precisely evaluate hydrogen elastic scattering cross sections. This co rrection can modify the cross section at the few percent level. In contrast, dispersive effects can cause significantly larger changes from the Born approximation. The purpose of this experiment is to extract the carbon-12 elastic cross section around the first diffraction minimum, where the Born term contributions to the cross section are small to maximize the sensitivity to dispersive effects. The analysis uses the LEDEX data from the high resolution Jefferson Lab Hall A spectrometers to extract the cross sections near the first diffraction minimum of 12C at beam energies of 362 MeV and 685 MeV. The results are in very good agreement with previous world data, although with less precision. The average deviation from a static nuclear charge distribution expected from linear and quadratic fits indicate a 30.6% contribution of dispersive effects to the cross section at 1 GeV. The magnitude of the dispersive effects near the first diffraction minimum of 12C has been confirmed to be large with a strong energy dependence and could account for a large fraction of the magnitude for the observed quenching of the longitudinal nuclear response. These effects could also be important for nuclei radii extracted from parity-violating asymmetries measured near a diffraction minimum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا