ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical and observational bounds on some interacting vacuum energy scenarios

96   0   0.0 ( 0 )
 نشر من قبل Supriya Pan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of interacting dark matter-dark energy models is characterized through an interaction rate function quantifying the energy flow between these dark sectors. In most of the interaction functions, the expansion rate Hubble function is considered and sometimes it is argued that, as the interaction function is a local property, the inclusion of the Hubble function may influence the overall dynamics. This is the starting point of the present article where we consider a very simple interacting cosmic scenario between vacuum energy and the cold dark matter characterized by various interaction functions originated from a general interaction function: $Q= Gammarho_{c}^{alpha }rho_{x}^{1-alpha -beta}(rho_{c}+rho_{x})^{beta}$, where $rho_c$, $rho_x$ are respectively the cold dark matter density and vacuum energy density; $alpha$, $beta$ are real numbers and $Gamma$ is the coupling parameter with dimension equal to the dimension of the Hubble rate. We investigate four distinct interacting cosmic scenarios and constrain them both theoretically and observationally. Our analyses clearly reveal that the interaction models should be carefully handled.



قيم البحث

اقرأ أيضاً

Vacuum energy is a simple model for dark energy driving an accelerated expansion of the universe. If the vacuum energy is inhomogeneous in spacetime then it must be interacting. We present the general equations for a spacetime-dependent vacuum energy in cosmology, including inhomogeneous perturbations. We show how any dark energy cosmology can be described by an interacting vacuum+matter. Different models for the interaction can lead to different behaviour (e.g., sound speed for dark energy perturbations) and hence could be distinguished by cosmological observations. As an example we present the cosmic microwave microwave background anisotropies and the matter power spectrum for two differe
100 - Suresh Kumar 2021
Since physics of the dark sector components of the Universe is not yet well-understood, the phenomenological studies of non-minimal interaction in the dark sector could possibly pave the way to theoretical and experimental progress in this direction. Therefore, in this work, we intend to explore some features and consequences of a phenomenological interaction in the dark sector. We use the Planck 2018, BAO, JLA, KiDS and HST data to investigate two extensions of the base $Lambda$CDM model, viz., (i) we allow the interaction among vacuum energy and dark matter, namely the I$Lambda$CDM model, wherein the interaction strength is proportional to the vacuum energy density and expansion rate of the Universe, and (ii) the I$Lambda$CDM scenario with free effective neutrino mass and number, namely the $ u$I$Lambda$CDM model. We also present comparative analyses of the interaction models with the companion models, namely, $Lambda$CDM, $ uLambda$CDM, $w$CDM and $ u w$CDM. In both the interaction models, we find non-zero coupling in the dark sector up to 99% CL with energy transfer from dark matter to vacuum energy, and observe a phantom-like behavior of the effective dark energy without actual ``phantom crossing. The well-known tensions on the cosmological parameters $H_0$ and $sigma_8$, prevailing within the $Lambda$CDM cosmology, are relaxed significantly in these models wherein the $ u$I$Lambda$CDM model shows consistency with the standard effective neutrino mass and number. Both the interaction models find a better fit to the combined data compared to the companion models under consideration.
A novel fractal structure for the cosmological horizon, inspired by COVID-19 geometry, which results in a modified area entropy, is applied to cosmology in order to serve dark energy. The constraints based on a complete set of observational data are derived. There is a strong Bayesian evidence in favor of such a dark energy in comparison to a standard $Lambda$CDM model and that this energy cannot be reduced to a cosmological constant. Besides, there is a shift towards smaller values of baryon density parameter and towards larger values of the Hubble parameter, which reduces the Hubble tension.
146 - Rodger I. Thompson 2017
Many physical theories beyond the Standard Model predict time variations of basic physics parameters. Direct measurement of the time variations of these parameters is very difficult or impossible to achieve. By contrast, measurements of fundamental c onstants are relatively easy to achieve, both in the laboratory and by astronomical spectra of atoms and molecules in the early universe. In this work measurements of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are combined to place mildly model dependent limits on the fractional variation of the Quantum Chromodynamic Scale and the sum of the fractional variations of the Higgs Vacuum Expectation Value and the Yukawa couplings on time scales of more than half the age of the universe. The addition of another model parameter allows the fractional variation of the Higgs VEV and the Yukawa couplings to be computed separately. Limits on their variation are found at the level of less than $5 times 10^{-5}$ over the past seven gigayears. A model dependent relation between the expected fractional variation of $alpha$ relative to $mu$ tightens the limits to $10^{-7}$ over the same time span. Limits on the present day rate of change of the constants and parameters are then calculated using slow roll quintessence. A primary result of this work is that studies of the dimensionless fundamental constants such as $alpha$ and $mu$, whose values depend on the values of the physics parameters, are excellent monitors of the limits on the time variation of these parameters.
We present a phase-space analysis of the qualitative dynamics cosmologies where dark matter exchanges energy with the vacuum component. We find fixed points corresponding to power-law solutions where the different components remain a constant fractio n of the total energy density and given an existence condition for any fixed points with nonvanishing energy transfer. For some interaction models we find novel fixed points in the presence of a third noninteracting fluid with constant equation of state, such as radiation, where the interacting vacuum+matter tracks the evolution of the third fluid, analogous to tracker solutions previously found for self-interacting scalar fields. We illustrate the phase-plane behavior, determining the equation of state and stability of the fixed points in the case of a simple linear interaction model, for interacting vacuum and dark matter, including the presence of noninteracting radiation. We give approximate solutions for the equation of state in matter- or vacuum-dominated solutions in the case of small interaction parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا