ترغب بنشر مسار تعليمي؟ اضغط هنا

Meta Hamiltonian Learning

91   0   0.0 ( 0 )
 نشر من قبل Przemyslaw Bienias
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Efficient characterization of quantum devices is a significant challenge critical for the development of large scale quantum computers. We consider an experimentally motivated situation, in which we have a decent estimate of the Hamiltonian, and its parameters need to be characterized and fine-tuned frequently to combat drifting experimental variables. We use a machine learning technique known as meta-learning to learn a more efficient optimizer for this task. We consider training with the nearest-neighbor Ising model and study the trained models generalizability to other Hamiltonian models and larger system sizes. We observe that the meta-optimizer outperforms other optimization methods in average loss over test samples. This advantage follows from the meta-optimizer being less likely to get stuck in local minima, which highly skews the distribution of the final loss of the other optimizers. In general, meta-learning decreases the number of calls to the experiment and reduces the needed classical computational resources.



قيم البحث

اقرأ أيضاً

Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
The required precision to perform quantum simulations beyond the capabilities of classical computers imposes major experimental and theoretical challenges. Here, we develop a characterization technique to benchmark the implementation precision of a s pecific quantum simulation task. We infer all parameters of the bosonic Hamiltonian that governs the dynamics of excitations in a two-dimensional grid of nearest-neighbour coupled superconducting qubits. We devise a robust algorithm for identification of Hamiltonian parameters from measured times series of the expectation values of single-mode canonical coordinates. Using super-resolution and denoising methods, we first extract eigenfrequencies of the governing Hamiltonian from the complex time domain measurement; next, we recover the eigenvectors of the Hamiltonian via constrained manifold optimization over the orthogonal group. For five and six coupled qubits, we identify Hamiltonian parameters with sub-MHz precision and construct a spatial implementation error map for a grid of 27 qubits. Our approach enables us to distinguish and quantify the effects of state preparation and measurement errors and show that they are the dominant sources of errors in the implementation. Our results quantify the implementation accuracy of analog dynamics and introduce a diagnostic toolkit for understanding, calibrating, and improving analog quantum processors.
We add quantum fluctuations to a classical Hamiltonian model with synchronized period doubling in the thermodynamic limit, replacing the $N$ classical interacting angular momenta with quantum spins of size $l$. The full permutation symmetry of the Ha miltonian allows a mapping to a bosonic model and the application of exact diagonalization for quite large system size. {In the thermodynamic limit $Ntoinfty$ the model is described by a system of Gross-Pitaevski equations whose classical-chaos properties closely mirror the finite-$N$ quantum chaos.} For $Ntoinfty$, and $l$ finite, Rabi oscillations mark the absence of persistent period doubling, which is recovered for $ltoinfty$ with Rabi-oscillation frequency tending exponentially to 0. For the chosen initial conditions, we can represent this model in terms of Pauli matrices and apply the discrete truncated Wigner approximation. For finite $l$ this approximation reproduces no Rabi oscillations but correctly predicts the absence of period doubling. Quantitative agreement is recovered in the classical $ltoinfty$ limit.
146 - E. Vetsch , D. Reitz , G. Sague 2009
Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent f ield surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices.
197 - D. Meiser , M. J. Holland 2010
Alkaline-earth like atoms with ultra-narrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential use fulness of this light source as an ultrastable oscillator in clock and precision metrology applications it is crucial to understand the noise properties of this device. In this paper we present a detailed analysis of the intensity fluctuations by means of Monte-Carlo simulations and semi-classical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا