ﻻ يوجد ملخص باللغة العربية
In recent years, single-atom catalysts attracted lots of attention because of their high catalytic activity, selectivity, stability, maximum atom utilization, exceptional performance, and low cost. Single-atom catalyst contains isolated individual atom which are coordinated with the surface atoms of support such as a metal oxide or 2d - materials. In this review article, we present the advancement in single-atom catalysis in recent years with a focus on the various synthesis methods and their application in catalytic reactions. We also demonstrate the reaction mechanism of a single-atom catalyst for different catalytic reactions from theoretical aspects using density functional theory.
Single-atom metal alloy catalysts (SAACs) have recently become a very active new frontier in catalysis research. The simultaneous optimization of both facile dissociation of reactants and a balanced strength of intermediates binding make them highly
Catalysis has entered everyday life through a number of technological processes relying on different catalytic systems. The increasing demand for such systems requires rationalization of the use of their expensive components, like noble metal catalys
The d-band center descriptor based on the adsorption strength of adsorbate has been widely used in understanding and predicting the catalytic activity in various metal catalysts. However, its applicability is unsure for the single-atom-anchored two-d
A single Co atom adsorbed on Cu(111) or on ferromagnetic Co islands is contacted with non-magnetic W or ferromagnetic Ni tips in a scanning tunneling microscope. When the Co atom bridges two non-magnetic electrodes conductances of 2e^2/h are found. W
Developing single atom catalysts (SACs) for chemical reactions of vital importance in renewable energy sector has emerged as a need of the hour. In this perspective, transition metal based SACs with monolayer phosphorous (phosphorene) as the supporti