ترغب بنشر مسار تعليمي؟ اضغط هنا

LightPIR: Privacy-Preserving Route Discovery for Payment Channel Networks

84   0   0.0 ( 0 )
 نشر من قبل Iosif Salem
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Payment channel networks are a promising approach to improve the scalability of cryptocurrencies: they allow to perform transactions in a peer-to-peer fashion, along multi-hop routes in the network, without requiring consensus on the blockchain. However, during the discovery of cost-efficient routes for the transaction, critical information may be revealed about the transacting entities. This paper initiates the study of privacy-preserving route discovery mechanisms for payment channel networks. In particular, we present LightPIR, an approach which allows a source to efficiently discover a shortest path to its destination without revealing any information about the endpoints of the transaction. The two main observations which allow for an efficient solution in LightPIR are that: (1) surprisingly, hub labelling algorithms - which were developed to preprocess street network like graphs so one can later efficiently compute shortest paths - also work well for the graphs underlying payment channel networks, and that (2) hub labelling algorithms can be directly combined with private information retrieval. LightPIR relies on a simple hub labeling heuristic on top of existing hub labeling algorithms which leverages the specific topological features of cryptocurrency networks to further minimize storage and bandwidth overheads. In a case study considering the Lightning network, we show that our approach is an order of magnitude more efficient compared to a privacy-preserving baseline based on using private information retrieval on a database that stores all pairs shortest paths.



قيم البحث

اقرأ أيضاً

With the advent of the Internet-of-Things (IoT), vehicular networks and cyber-physical systems, the need for real-time data processing and analysis has emerged as an essential pre-requite for customers satisfaction. In this direction, Mobile Edge Com puting (MEC) provides seamless services with reduced latency, enhanced mobility, and improved location awareness. Since MEC has evolved from Cloud Computing, it inherited numerous security and privacy issues from the latter. Further, decentralized architectures and diversified deployment environments used in MEC platforms also aggravate the problem; causing great concerns for the research fraternity. Thus, in this paper, we propose an efficient and lightweight mutual authentication protocol for MEC environments; based on Elliptic Curve Cryptography (ECC), one-way hash functions and concatenation operations. The designed protocol also leverages the advantages of discrete logarithm problems, computational Diffie-Hellman, random numbers and time-stamps to resist various attacks namely-impersonation attacks, replay attacks, man-in-the-middle attacks, etc. The paper also presents a comparative assessment of the proposed scheme relative to the current state-of-the-art schemes. The obtained results demonstrate that the proposed scheme incurs relatively less communication and computational overheads, and is appropriate to be adopted in resource constraint MEC environments.
Distributed Virtual Private Networks (dVPNs) are new VPN solutions aiming to solve the trust-privacy concern of a VPNs central authority by leveraging a distributed architecture. In this paper, we first review the existing dVPN ecosystem and debate o n its privacy requirements. Then, we present VPN0, a dVPN with strong privacy guarantees and minimal performance impact on its users. VPN0 guarantees that a dVPN node only carries traffic it has whitelisted, without revealing its whitelist or knowing the traffic it tunnels. This is achieved via three main innovations. First, an attestation mechanism which leverages TLS to certify a user visit to a specific domain. Second, a zero knowledge proof to certify that some incoming traffic is authorized, e.g., falls in a nodes whitelist, without disclosing the target domain. Third, a dynamic chain of VPN tunnels to both increase privacy and guarantee service continuation while traffic certification is in place. The paper demonstrates VPN0 functioning when integrated with several production systems, namely BitTorrent DHT and ProtonVPN.
185 - Rulin Shao , Hongyu He , Hui Liu 2019
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to ta ke control over their sensitive information during both training and using processes. To address this problem, we propose a privacy-preserving method for the distributed system, Stochastic Channel-Based Federated Learning (SCBF), which enables the participants to train a high-performance model cooperatively without sharing their inputs. Specifically, we design, implement and evaluate a channel-based update algorithm for the central server in a distributed system, which selects the channels with regard to the most active features in a training loop and uploads them as learned information from local datasets. A pruning process is applied to the algorithm based on the validation set, which serves as a model accelerator. In the experiment, our model presents better performances and higher saturating speed than the Federated Averaging method which reveals all the parameters of local models to the server when updating. We also demonstrate that the saturating rate of performance could be promoted by introducing a pruning process. And further improvement could be achieved by tuning the pruning rate. Our experiment shows that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUCROC performance and a reduction of 0.0068 in AUCPR.
71 - Enes Erdin , Suat Mercan , 2021
Cryptocurrencies redefined how money can be stored and transferred among users. However, independent of the amount being sent, public blockchain-based cryptocurrencies suffer from high transaction waiting times and fees. These drawbacks hinder the wi de use of cryptocurrencies by masses. To address these challenges, payment channel network concept is touted as the most viable solution to be used for micro-payments. The idea is exchanging the ownership of money by keeping the state of the accounts locally. The users inform the blockchain rarely, which decreases the load on the blockchain. Specifically, payment channel networks can provide transaction approvals in seconds by charging a nominal fee proportional to the payment amount. Such attraction on payment channel networks inspired many recent studies which focus on how to design them and allocate channels such that the transactions will be secure and efficient. However, as payment channel networks are emerging and reaching large number of users, privacy issues are becoming more relevant that raise concerns about exposing not only individual habits but also businesses revenues. In this paper, we first propose a categorization of the existing payment networks formed on top of blockchain-backed cryptocurrencies. After discussing several emerging attacks on user/business privacy in these payment channel networks, we qualitatively evaluate them based on a number of privacy metrics that relate to our case. Based on the discussions on the strengths and weaknesses of the approaches, we offer possible directions for research for the future of privacy based payment channel networks.
Outsourcing neural network inference tasks to an untrusted cloud raises data privacy and integrity concerns. To address these challenges, several privacy-preserving and verifiable inference techniques have been proposed based on replacing the non-pol ynomial activation functions such as the rectified linear unit (ReLU) function with polynomial activation functions. Such techniques usually require polynomials with integer coefficients or polynomials over finite fields. Motivated by such requirements, several works proposed replacing the ReLU activation function with the square activation function. In this work, we empirically show that the square function is not the best degree-$2$ polynomial that can replace the ReLU function even when restricting the polynomials to have integer coefficients. We instead propose a degree-$2$ polynomial activation function with a first order term and empirically show that it can lead to much better models. Our experiments on the CIFAR-$10$ and CIFAR-$100$ datasets on various architectures show that our proposed activation function improves the test accuracy by up to $9.4%$ compared to the square function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا