ﻻ يوجد ملخص باللغة العربية
Payment channel networks are a promising approach to improve the scalability of cryptocurrencies: they allow to perform transactions in a peer-to-peer fashion, along multi-hop routes in the network, without requiring consensus on the blockchain. However, during the discovery of cost-efficient routes for the transaction, critical information may be revealed about the transacting entities. This paper initiates the study of privacy-preserving route discovery mechanisms for payment channel networks. In particular, we present LightPIR, an approach which allows a source to efficiently discover a shortest path to its destination without revealing any information about the endpoints of the transaction. The two main observations which allow for an efficient solution in LightPIR are that: (1) surprisingly, hub labelling algorithms - which were developed to preprocess street network like graphs so one can later efficiently compute shortest paths - also work well for the graphs underlying payment channel networks, and that (2) hub labelling algorithms can be directly combined with private information retrieval. LightPIR relies on a simple hub labeling heuristic on top of existing hub labeling algorithms which leverages the specific topological features of cryptocurrency networks to further minimize storage and bandwidth overheads. In a case study considering the Lightning network, we show that our approach is an order of magnitude more efficient compared to a privacy-preserving baseline based on using private information retrieval on a database that stores all pairs shortest paths.
With the advent of the Internet-of-Things (IoT), vehicular networks and cyber-physical systems, the need for real-time data processing and analysis has emerged as an essential pre-requite for customers satisfaction. In this direction, Mobile Edge Com
Distributed Virtual Private Networks (dVPNs) are new VPN solutions aiming to solve the trust-privacy concern of a VPNs central authority by leveraging a distributed architecture. In this paper, we first review the existing dVPN ecosystem and debate o
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to ta
Cryptocurrencies redefined how money can be stored and transferred among users. However, independent of the amount being sent, public blockchain-based cryptocurrencies suffer from high transaction waiting times and fees. These drawbacks hinder the wi
Outsourcing neural network inference tasks to an untrusted cloud raises data privacy and integrity concerns. To address these challenges, several privacy-preserving and verifiable inference techniques have been proposed based on replacing the non-pol