ﻻ يوجد ملخص باللغة العربية
Symmetric mass generation is the name given to a mechanism for gapping fermions while preserving a chiral, but necessarily non-anomalous, symmetry. In this paper we describe how symmetric mass generation for continuous symmetries can be achieved using gauge dynamics in two and four dimensions. Various strong coupling effects are invoked, including known properties of supersymmetric gauge theories, specifically the phenomenon of s-confinement, and conjectured properties of non-supersymmetric chiral gauge theories.
We include vortices in the superfluid EFT for four dimensional CFTs at large global charge. Using the state-operator correspondence, vortices are mapped to charged operators with large spin and we compute their scaling dimensions. Different regimes a
We study $eta$-deformations of principal chiral model (PCM) from the viewpoint of a 4D Chern-Simons (CS) theory. The $eta$-deformed PCM has originally been derived from the 4D CS theory by Delduc, Lacroix, Magro and Vicedo [arXiv:1909.13824]. The der
Yang-Mills instantons are solitonic particles in d=4+1 dimensional gauge theories. We construct and analyse the quantum Hall states that arise when these particles are restricted to the lowest Landau level. We describe the ground state wavefunctions
Extensive investigations show that QED$_{3}$ exhibits dynamical fermion mass generation at zero temperature when the fermion flavor $N$ is sufficiently small. However, it seems difficult to extend the theoretical analysis to finite temperature. We st
We study a supersymmetry breaking deformation of the 2d N=(2,2) cigar=Liouville mirror pair, first introduced by Hori and Kapustin. We show that mirror symmetry flows in the infra-red to 2d bosonization, with the theories reducing to massive Thirring