ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Markovian process with variable memory functions

191   0   0.0 ( 0 )
 نشر من قبل R.K. Brojen Singh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a treatment of non-Markovian character of memory by incorporating different forms of Mittag-Leffler (ML) function, which generally arises in the solution of fractional master equation, as different memory functions in the Generalized Kolmogorov-Feller Equation (GKFE). The cross-over from the short time (stretched exponential) to long time (inverse power law) approximations of the ML function incorporated in the GKFE is proven. We have found that the GKFE solutions are the same for negative exponential and for upto frst order expansion of stretched exponential function for very small $tau rightarrow 0$. A generalized integro-differential equation form of the GKFE along with an asymptotic case is provided.



قيم البحث

اقرأ أيضاً

We study the random processes with non-local memory and obtain new solutions of the Mori-Zwanzig equation describing non-markovian systems. We analyze the system dynamics depending on the amplitudes $ u$ and $mu_0$ of the local and non-local memory a nd pay attention to the line in the ($ u$, $mu_0$)-plane separating the regions with asymptotically stationary and non-stationary behavior. We obtain general equations for such boundaries and consider them for three examples of the non-local memory functions. We show that there exist two types of the boundaries with fundamentally different system dynamics. On the boundaries of the first type, the diffusion with memory takes place, whereas on borderlines of the second type, the phenomenon of noise-induced resonance can be observed. A distinctive feature of noise-induced resonance in the systems under consideration is that it occurs in the absence of an external regular periodic force. It takes place due to the presence of frequencies in the noise spectrum, which are close to the self-frequency of the system. We analyze also the variance of the process and compare its behavior for regions of asymptotic stationarity and non-stationarity, as well as for diffusive and noise-induced-resonance borderlines between them.
We study the non-Markovian random continuous processes described by the Mori-Zwanzig equation. As a starting point, we use the Markovian Gaussian Ornstein-Uhlenbeck process and introduce an integral memory term depending on the past of the process in to expression for the higher-order transition probability function and stochastic differential equation. We show that the proposed processes can be considered as continuous-time interpolations of discrete-time higher-order autoregressive sequences. An equation connecting the memory function (the kernel of integral term) and the two-point correlation function is obtained. A condition for stationarity of the process is established. We suggest a method to generate stationary continuous stochastic processes with prescribed pair correlation function. As illustration, some examples of numerical simulation of the processes with non-local memory are presented.
149 - Salvatore Miccich`e 2008
In this paper we give explicit examples of power-law correlated stationary Markovian processes y(t) where the stationary pdf shows tails which are gaussian or exponential. These processes are obtained by simply performing a coordinate transformation of a specific power-law correlated additive process x(t), already known in the literature, whose pdf shows power-law tails 1/x^a. We give analytical and numerical evidence that although the new processes (i) are Markovian and (ii) have gaussian or exponential tails their autocorrelation function still shows a power-law decay <y(t) y(t+T)>=1/T^b where b grows with a with a law which is compatible with b=a/2-c, where c is a numerical constant. When a<2(1+c) the process y(t), although Markovian, is long-range correlated. Our results help in clarifying that even in the context of Markovian processes long-range dependencies are not necessarily associated to the occurrence of extreme events. Moreover, our results can be relevant in the modeling of complex systems with long memory. In fact, we provide simple processes associated to Langevin equations thus showing that long-memory effects can be modeled in the context of continuous time stationary Markovian processes.
235 - Arti Dua , R. Adhikari 2008
Recent experiments using fluorescence spectroscopy have been able to probe the dynamics of conformational fluctuations in proteins. The fluctuations are Gaussian but do not decay exponentially, and are therefore, non-Markovian. We present a theory wh ere non-Markovian fluctuation dynamics emerges naturally from the superposition of the Markovian fluctuations of the normal modes of the protein. A Rouse-like dynamics of the normal modes provides very good agreement to the experimentally measured correlation functions. We provide simple scaling arguments rationalising our results.
Non-Markovian dynamics pervades human activity and social networks and it induces memory effects and burstiness in a wide range of processes including inter-event time distributions, duration of interactions in temporal networks and human mobility. H ere we propose a non-Markovian Majority-Vote model (NMMV) that introduces non-Markovian effects in the standard (Markovian) Majority-Vote model (SMV). The SMV model is one of the simplest two-state stochastic models for studying opinion dynamics, and displays a continuous order-disorder phase transition at a critical noise. In the NMMV model we assume that the probability that an agent changes state is not only dependent on the majority state of his neighbors but it also depends on his {em age}, i.e. how long the agent has been in his current state. The NMMV model has two regimes: the aging regime implies that the probability that an agent changes state is decreasing with his age, while in the anti-aging regime the probability that an agent changes state is increasing with his age. Interestingly, we find that the critical noise at which we observe the order-disorder phase transition is a non-monotonic function of the rate $beta$ of the aging (anti-aging) process. In particular the critical noise in the aging regime displays a maximum as a function of $beta$ while in the anti-aging regime displays a minimum. This implies that the aging/anti-aging dynamics can retard/anticipate the transition and that there is an optimal rate $beta$ for maximally perturbing the value of the critical noise. The analytical results obtained in the framework of the heterogeneous mean-field approach are validated by extensive numerical simulations on a large variety of network topologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا