ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetism in a Semiconductor with Mobile Carriers via Low-Level Nonmagnetic Doping

118   0   0.0 ( 0 )
 نشر من قبل David Singh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that doped cubic iron pyrite, which is a diamagnetic semiconductor, becomes ferromagnetic when $p$-type doped. We furthermore find that this material can exhibit high spin polarization both for tunneling and transport devices. These results are based on first principles electronic structure and transport calculations. This illustrates the use of $p$-type doping without magnetic impurities as a strategy for obtaining ferromagnetic semiconducting behavior, with implications for spintronic applications that require both magnetic ordering and good mobility. This is a combination that has been difficult to achieve by doping semiconductors with magnetic impurities. We show that phosphorus and arsenic may be effective dopants for achieving this behavior.



قيم البحث

اقرأ أيضاً

Diluted magnetic semiconductors including Mn-doped GaAs are attractive for gate-controlled spintronics but Curie transition at room temperature with long-range ferromagnetic order is still debatable to date. Here, we report the room-temperature ferro magnetic domains with long-range order in semiconducting V-doped WSe2 monolayer synthesized by chemical vapor deposition. Ferromagnetic order is manifested using magnetic force microscopy up to 360K, while retaining high on/off current ratio of ~105 at 0.1% V-doping concentration. The V-substitution to W sites keep a V-V separation distance of 5 nm without V-V aggregation, scrutinized by high-resolution scanning transmission-electron microscopy, which implies the possibility of the Ruderman-Kittel-Kasuya-Yoshida interaction (or Zener model) by establishing the long-range ferromagnetic order in V-doped WSe2 monolayer through free hole carriers. More importantly, the ferromagnetic order is clearly modulated by applying a back gate. Our findings open new opportunities for using two-dimensional transition metal dichalcogenides for future spintronics.
100 - D.H.K. Murthy , T. Xu 2011
From electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and decay kinetics on photo-excitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism . A large enhancement in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to a higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.
We report ultrafast transient-grating experiments on heavily p-type InP at 15 K. Our measurement reveals the dynamics and diffusion of photoexcited electrons and holes as a function of their density n in the range 2E16 to 6E17 cm-3. After the first f ew picoseconds the grating decays primarily due to ambipolar diffusion. While at low density we observe a regime in which the ambipolar diffusion is electron-dominated and increases rapidly with n, at high n it appears to saturate at 34 cm2/s. We present a simple calculation that reproduces the main results of our measurements as well as of previously published measurements that had shown diffusion to be a flat or decreasing function of n. By accounting for effect of density on charge susceptibility we show that, in p-type semiconductors, the regime we observe of increasing ambipolar diffusion is unique to heavy doping and low temperature, where both the holes and electrons are degenerate; in this regime the electronic and ambipolar diffusion are nearly equal. The saturation is identified as a crossover to ambipolar diffusion dominated by the majority carriers, the holes. At short times the transient-grating signal rises gradually. This rise reveals cooling of hot electrons and, at high photocarrier density, allows us to measure ambipolar diffusion of 110 cm2/s in the hot-carrier regime.
Room-temperature ferromagnetism has been observed in the nanoparticles (7 - 30 nm dia) of nonmagnetic oxides such as CeO2, Al2O3, ZnO, In2O3 and SnO2. The saturated magnetic moments in CeO_2 and Al_2O_3 nanoparticles are comparable to those observed in transition metal doped wide band semiconducting oxides. The other oxide nanoparticles show somewhat lower values of magnetization but with a clear hysteretic behavior. Conversely, the bulk samples obtained by sintering the nanoparticles at high temperatures in air or oxygen became diamagnetic. As there were no magnetic impurities present, we assume that the origin of ferromagnetism may be due to the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of nanoparticles. We suggest that ferromagnetism may be a universal characteristic of nanopartilces of metal oxides
Quantum anomalous Hall effect (QAHE) has been experimentally observed in magnetically doped topological insulators. However, ultra-low temperature (usually below 300 mK), which is mainly attributed to inhomogeneous magnetic doping, becomes a daunting challenge for potential applications. Here, a textit{nonmagnetic}-doping strategy is proposed to produce ferromagnetism and realize QAHE in topological insulators. We numerically demonstrated that magnetic moments can be induced by nitrogen or carbon substitution in Bi$_2$Se$_3$, Bi$_2$Te$_3$, and Sb$_2$Te$_3$, but only nitrogen-doped Sb$_2$Te$_3$ exhibits long-range ferromagnetism and preserve large bulk band gap. We further show that its corresponding thin-film can harbor QAHE at temperatures of 17-29 Kelvin, which is two orders of magnitude higher than the typical temperatures in similar systems. Our proposed textit{nonmagnetic} doping scheme may shed new light in experimental realization of high-temperature QAHE in topological insulators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا