ﻻ يوجد ملخص باللغة العربية
The cues needed to detect spoofing attacks against automatic speaker verification are often located in specific spectral sub-bands or temporal segments. Previous works show the potential to learn these using either spectral or temporal self-attention mechanisms but not the relationships between neighbouring sub-bands or segments. This paper reports our use of graph attention networks (GATs) to model these relationships and to improve spoofing detection performance. GATs leverage a self-attention mechanism over graph structured data to model the data manifold and the relationships between nodes. Our graph is constructed from representations produced by a ResNet. Nodes in the graph represent information either in specific sub-bands or temporal segments. Experiments performed on the ASVspoof 2019 logical access database show that our GAT-based model with temporal attention outperforms all of our baseline single systems. Furthermore, GAT-based systems are complementary to a set of existing systems. The fusion of GAT-based models with more conventional countermeasures delivers a 47% relative improvement in performance compared to the best performing single GAT system.
Artefacts that serve to distinguish bona fide speech from spoofed or deepfake speech are known to reside in specific subbands and temporal segments. Various approaches can be used to capture and model such artefacts, however, none works well across a
This work presents a novel back-end framework for speaker verification using graph attention networks. Segment-wise speaker embeddings extracted from multiple crops within an utterance are interpreted as node representations of a graph. The proposed
The ASVspoof initiative was conceived to spearhead research in anti-spoofing for automatic speaker verification (ASV). This paper describes the third in a series of bi-annual challenges: ASVspoof 2019. With the challenge database and protocols being
The ASVspoof challenge series was born to spearhead research in anti-spoofing for automatic speaker verification (ASV). The two challenge editions in 2015 and 2017 involved the assessment of spoofing countermeasures (CMs) in isolation from ASV using
We present JHUs system submission to the ASVspoof 2019 Challenge: Anti-Spoofing with Squeeze-Excitation and Residual neTworks (ASSERT). Anti-spoofing has gathered more and more attention since the inauguration of the ASVspoof Challenges, and ASVspoof