ترغب بنشر مسار تعليمي؟ اضغط هنا

SiamReID: Confuser Aware Siamese Tracker with Re-identification Feature

54   0   0.0 ( 0 )
 نشر من قبل Abu Md Niamul Taufique
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Siamese deep-network trackers have received significant attention in recent years due to their real-time speed and state-of-the-art performance. However, Siamese trackers suffer from similar looking confusers, that are prevalent in aerial imagery and create challenging conditions due to prolonged occlusions where the tracker object re-appears under different pose and illumination. Our work proposes SiamReID, a novel re-identification framework for Siamese trackers, that incorporates confuser rejection during prolonged occlusions and is well-suited for aerial tracking. The re-identification feature is trained using both triplet loss and a class balanced loss. Our approach achieves state-of-the-art performance in the UAVDT single object tracking benchmark.



قيم البحث

اقرأ أيضاً

Visual attention has proven to be effective in improving the performance of person re-identification. Most existing methods apply visual attention heuristically by learning an additional attention map to re-weight the feature maps for person re-ident ification. However, this kind of methods inevitably increase the model complexity and inference time. In this paper, we propose to incorporate the attention learning as additional objectives in a person ReID network without changing the original structure, thus maintain the same inference time and model size. Two kinds of attentions have been considered to make the learned feature maps being aware of the person and related body parts respectively. Globally, a holistic attention branch (HAB) makes the feature maps obtained by backbone focus on persons so as to alleviate the influence of background. Locally, a partial attention branch (PAB) makes the extracted features be decoupled into several groups and be separately responsible for different body parts (i.e., keypoints), thus increasing the robustness to pose variation and partial occlusion. These two kinds of attentions are universal and can be incorporated into existing ReID networks. We have tested its performance on two typical networks (TriNet and Bag of Tricks) and observed significant performance improvement on five widely used datasets.
The challenge of person re-identification (re-id) is to match individual images of the same person captured by different non-overlapping camera views against significant and unknown cross-view feature distortion. While a large number of distance metr ic/subspace learning models have been developed for re-id, the cross-view transformations they learned are view-generic and thus potentially less effective in quantifying the feature distortion inherent to each camera view. Learning view-specific feature transformations for re-id (i.e., view-specific re-id), an under-studied approach, becomes an alternative resort for this problem. In this work, we formulate a novel view-specific person re-identification framework from the feature augmentation point of view, called Camera coRrelation Aware Feature augmenTation (CRAFT). Specifically, CRAFT performs cross-view adaptation by automatically measuring camera correlation from cross-view visual data distribution and adaptively conducting feature augmentation to transform the original features into a new adaptive space. Through our augmentation framework, view-generic learning algorithms can be readily generalized to learn and optimize view-specific sub-models whilst simultaneously modelling view-generic discrimination information. Therefore, our framework not only inherits the strength of view-generic model learning but also provides an effective way to take into account view specific characteristics. Our CRAFT framework can be extended to jointly learn view-specific feature transformations for person re-id across a large network with more than two cameras, a largely under-investigated but realistic re-id setting. Additionally, we present a domain-generic deep person appearance representation which is designed particularly to be towards view invariant for facilitating cross-view adaptation by CRAFT.
Person re-identification (reID) by CNNs based networks has achieved favorable performance in recent years. However, most of existing CNNs based methods do not take full advantage of spatial-temporal context modeling. In fact, the global spatial-tempo ral context can greatly clarify local distractions to enhance the target feature representation. To comprehensively leverage the spatial-temporal context information, in this work, we present a novel block, Interaction-Aggregation-Update (IAU), for high-performance person reID. Firstly, Spatial-Temporal IAU (STIAU) module is introduced. STIAU jointly incorporates two types of contextual interactions into a CNN framework for target feature learning. Here the spatial interactions learn to compute the contextual dependencies between different body parts of a single frame. While the temporal interactions are used to capture the contextual dependencies between the same body parts across all frames. Furthermore, a Channel IAU (CIAU) module is designed to model the semantic contextual interactions between channel features to enhance the feature representation, especially for small-scale visual cues and body parts. Therefore, the IAU block enables the feature to incorporate the globally spatial, temporal, and channel context. It is lightweight, end-to-end trainable, and can be easily plugged into existing CNNs to form IAUnet. The experiments show that IAUnet performs favorably against state-of-the-art on both image and video reID tasks and achieves compelling results on a general object categorization task. The source code is available at https://github.com/blue-blue272/ImgReID-IAnet.
With the development of smart cities, urban surveillance video analysis will play a further significant role in intelligent transportation systems. Identifying the same target vehicle in large datasets from non-overlapping cameras should be highlight ed, which has grown into a hot topic in promoting intelligent transportation systems. However, vehicle re-identification (re-ID) technology is a challenging task since vehicles of the same design or manufacturer show similar appearance. To fill these gaps, we tackle this challenge by proposing Triplet Center Loss based Part-aware Model (TCPM) that leverages the discriminative features in part details of vehicles to refine the accuracy of vehicle re-identification. TCPM base on part discovery is that partitions the vehicle from horizontal and vertical directions to strengthen the details of the vehicle and reinforce the internal consistency of the parts. In addition, to eliminate intra-class differences in local regions of the vehicle, we propose external memory modules to emphasize the consistency of each part to learn the discriminating features, which forms a global dictionary over all categories in dataset. In TCPM, triplet-center loss is introduced to ensure each part of vehicle features extracted has intra-class consistency and inter-class separability. Experimental results show that our proposed TCPM has an enormous preference over the existing state-of-the-art methods on benchmark datasets VehicleID and VeRi-776.
84 - Haojie Liu , Shun Ma , Daoxun Xia 2021
Visible-Infrared person re-identification (VI-ReID) is a challenging matching problem due to large modality varitions between visible and infrared images. Existing approaches usually bridge the modality gap with only feature-level constraints, ignori ng pixel-level variations. Some methods employ GAN to generate style-consistent images, but it destroys the structure information and incurs a considerable level of noise. In this paper, we explicitly consider these challenges and formulate a novel spectrum-aware feature augementation network named SFANet for cross-modality matching problem. Specifically, we put forward to employ grayscale-spectrum images to fully replace RGB images for feature learning. Learning with the grayscale-spectrum images, our model can apparently reduce modality discrepancy and detect inner structure relations across the different modalities, making it robust to color variations. In feature-level, we improve the conventional two-stream network through balancing the number of specific and sharable convolutional blocks, which preserve the spatial structure information of features. Additionally, a bi-directional tri-constrained top-push ranking loss (BTTR) is embedded in the proposed network to improve the discriminability, which efficiently further boosts the matching accuracy. Meanwhile, we further introduce an effective dual-linear with batch normalization ID embedding method to model the identity-specific information and assits BTTR loss in magnitude stabilizing. On SYSU-MM01 and RegDB datasets, we conducted extensively experiments to demonstrate that our proposed framework contributes indispensably and achieves a very competitive VI-ReID performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا