ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of Mass-Action Systems by Split Network Translation

54   0   0.0 ( 0 )
 نشر من قبل Matthew Johnston
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of corresponding a chemical reaction network to a split network translation, and use this novel process to extend the scope of existing network-based theory for characterizing the steady state set of mass-action systems. In the process of network splitting, the reactions of a network are divided into subnetworks, called slices, in such a way that, when summed across the slices, the stoichiometry of each reaction sums to that of the original network. This can produce a network with more desirable structural properties, such as weak reversibility and a lower deficiency, which can then be used to establish steady state properties of the original mass-action system such as multistationarity and absolute concentration robustness. We also present a computational implementation utilizing mixed-integer linear programming for determining whether a given chemical reaction network has a weakly reversible split network translation.



قيم البحث

اقرأ أيضاً

111 - Casian Pantea 2011
This paper concerns the long-term behavior of population systems, and in particular of chemical reaction systems, modeled by deterministic mass-action kinetics. We approach two important open problems in the field of Chemical Reaction Network Theory, the Persistence Conjecture and the Global Attractor Conjecture. We study the persistence of a large class of networks called lower-endotactic and in particular, we show that in weakly reversible mass-action systems with two-dimensional stoichiometric subspace all bounded trajectories are persistent. Moreover, we use these ideas to show that the Global Attractor Conjecture is true for systems with three-dimensional stoichiometric subspace.
Persistence and permanence are properties of dynamical systems that describe the long-term behavior of the solutions, and in particular specify whether positive solutions approach the boundary of the positive orthant. Mass-action systems (or more gen erally power-law systems) are very common in chemistry, biology, and engineering, and are often used to describe the dynamics in interaction networks. We prove that two-species mass-action systems derived from weakly reversible networks are both persistent and permanent, for any values of the reaction rate parameters. Moreover, we prove that a larger class of networks, called endotactic networks, also give rise to permanent systems, even if we allow the reaction rate parameters to vary in time. These results also apply to power-law systems and other nonlinear dynamical systems. In addition, ideas behind these results allow us to prove the Global Attractor Conjecture for three-species systems.
This paper proposes a unified approach for studying global exponential stability of a general class of switched systems described by time-varying nonlinear functional differential equations. Some new delay-independent criteria of global exponential s tability are established for this class of systems under arbitrary switching which satisfies some assumptions on the average dwell time. The obtained criteria are shown to cover and improve many previously known results, including, in particular, sufficient conditions for absolute exponential stability of switched time-delay systems with sector nonlinearities. Some simple examples are given to illustrate the proposed method.
Mass-action kinetics and its generalizations appear in mathematical models of (bio-)chemical reaction networks, population dynamics, and epidemiology. The dynamical systems arising from directed graphs are generally non-linear and difficult to analyz e. One approach to studying them is to find conditions on the network which either imply or preclude certain dynamical properties. For example, a vertex-balanced steady state for a generalized mass-action system is a state where the net flux through every vertex of the graph is zero. In particular, such steady states admit a monomial parametrization. The problem of existence and uniqueness of vertex-balanced steady states can be reformulated in two different ways, one of which is related to Birchs theorem in statistics, and the other one to the bijectivity of generalized polynomial maps, similar to maps appearing in geometric modelling. We present a generalization of Birchs theorem, by providing a sufficient condition for the existence and uniqueness of vertex-balanced steady states.
84 - Zhou Fang , Chuanhou Gao 2016
For stochastic systems with nonvanishing noise, i.e., at the desired state the noise port does not vanish, it is impossible to achieve the global stability of the desired state in the sense of probability. This bad property also leads to the loss of stochastic passivity at the desired state if a radially unbounded Lyapunov function is expected as the storage function. To characterize a certain (globally) stable behavior for such a class of systems, the stochastic asymptotic weak stability is proposed in this paper which suggests the transition measure of the state to be convergent and the ergodicity. By defining stochastic weak passivity that admits stochastic passivity only outside a ball centered around the desired state but not in the whole state space, we develop stochastic weak passivity theorems to ensure that the stochastic systems with nonvanishing noise can be globallylocally stabilized in weak sense through negative feedback law. Applications are shown to stochastic linear systems and a nonlinear process system, and some simulation are made on the latter further.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا