ﻻ يوجد ملخص باللغة العربية
We study the electronic properties of a position-dependent effective mass electron on a bilayer graphene catenoid bridge. We propose a position-dependent mass (PDM) as a function of both gaussian and mean curvature. The hamiltonian exhibits parity and time-reversal steaming from the bridge symmetry. The effective potential contains the da Costa, centrifugal and PDM terms which are concentrated around the catenoid bridge. For zero angular momentum states, the PDM term provides a transition between a reflectionless to a double-well potential. As a result, the bound states undergo a transition from a single state around the bridge throat into two states each one located at rings around the bridge. Above some critical value of the PDM coupling constant, the degeneracy is restored due to double-well tunneling resonance.
In this paper, we study the Dirac equation for an electron constrained to move on a catenoid surface. We decoupled the two components of the spinor and obtained two Klein-Gordon-like equations. Analytical solutions were obtained using supersymmetric
Realizations of some topological phases in two-dimensional systems rely on the challenge of jointly incorporating spin-orbit and magnetic exchange interactions. Here, we predict the formation and control of a fully valley-polarized quantum anomalous
We reveal a proximity effect between a topological band (Chern) insulator described by a Haldane model and spin-polarized Dirac particles of a graphene layer. Coupling weakly the two systems through a tunneling term in the bulk, the topological Chern
We introduce a multi-scale approach to obtain accurate atomic and electronic structures for atomically relaxed twisted bilayer graphene. High-level exact exchange and random phase approximation (EXX+RPA) correlation data provides the foundation to pa
We investigate the effects of lithium intercalation in twisted bilayers of graphene, using first-principles electronic structure calculations. To model this system we employ commensurate supercells that correspond to twist angles of 7.34$^circ$ and 2