ترغب بنشر مسار تعليمي؟ اضغط هنا

A detailed kinematic study of 3C 84 and its connection to Gamma-rays

141   0   0.0 ( 0 )
 نشر من قبل Jeffrey Hodgson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

3C 84 (NGC 1275) is the bright radio core of the Perseus Cluster. Even in the absence of strong relativistic effects, the source has been detected at Gamma-rays up to TeV energies. Despite its intensive study, the physical processes responsible for the high-energy emission in the source remain unanswered. We present a detailed kinematics study of the source and its connection to Gamma-ray emission. The sub-parsec scale radio structure is dominated by slow-moving features in both the eastern and western lanes of the jet. The jet appears to have accelerated to its maximum speed within less than 125 000 gravitational radii. The fastest reliably detected speed in the jet was ~0.9 c. This leads to a minimum Lorentz factor of ~1.35. Our analysis suggests the presence of multiple high-energy sites in the source. If Gamma-rays are associated with kinematic changes in the jet, they are being produced in both eastern and western lanes in the jet. Three Gamma-ray flares are contemporaneous with epochs where the slowly moving emission region splits into two sub-regions. We estimate the significance of these events being associated as ~2-3 sigma. We tested our results against theoretical predictions for magnetic reconnection-induced mini-jets and turbulence and find them compatible.



قيم البحث

اقرأ أيضاً

3C 345 is one of the archetypical active galactic nuclei, showing structural and flux variability on parsec scales near a compact unresolved radio core. During the last 2 years, the source has been undergoing a period of high activity visible in the broad spectral range, from radio through high-energy bands. We have been monitoring parsec-scale radio emission in 3C 345 during this period at monthly intervals, using the VLBA at 15, 24, and 43 GHz. Our radio observations are compared with gamma-ray emission detected by Fermi-LAT in the region including 3C 345 (1FGL J1642.5+3947). Three distinct gamma-ray events observed in this region are associated with the propagation of relativistic plasma condensations inside the radio jet of 3C 345. We report on evidence for the gamma-rays to be produced in a region of the jet of up to 40 pc (de-projected) in extent. This suggests the synchrotron self-Compton process as the most likely mechanism for production of gamma-rays in the source.
3C 84 is a nearby Active Galactic Nucleus (AGN) that is unique in that is believed that we are observing near the true jet launching region - unlike blazars. The source is active in Gamma rays and has been detected with Fermi since its launch in 2008 , including being detected at TeV energies with other instruments. Due to the relative proximity of the source (z=0.018), it provides a unique opportunity to pinpoint the location of the $gamma$-ray emission by combining the Gamma ray data with very long baseline inteferometry (VLBI) data. A study using the Korean VLBI network (KVN) showed that the Gamma rays occur in both downstream jet emission and the region near where the jet is launched. Further analysis of the kinematics using Wavelet Image Segmentation and Evaluation (WISE) algorithm, which uses 2-dimensional cross-correlations to statistically derive the kinematics of high-resolution 7 mm VLBA data show that the Gamma ray emission is caused by a fast-travelling shock catching a slower moving shock and then interacting with the external medium, in behaviour reminiscent of a long duration gamma-ray burst (GRB). This could explain why such high energy flaring is seen in such low Doppler boosted sources. Finally, we show some early results from a study of the jet launching region using the Global mm-VLBI Array (GMVA). The nucleus appears to have a consistent double nuclear structure that is likely too broad to be the true jet base.
We investigate the supernova remnant (SNR) 3C 397 and its neighboring pulsar PSR J1906+0722 in high energy gamma rays by using nearly six years of archival data of {it Large Area Telescope} on board {it Fermi Gamma Ray Space Telescope} (Fermi-LAT). T he off-pulse analysis of gamma-ray flux from the location of PSR J1906+0722 reveals an excess emission which is found to be very close to the radio location of 3C 397. Here, we present the preliminary results of this gamma-ray analysis of 3C 397 and PSR J1906+0722.
168 - Y. Fukui , H. Sano , J. Sato 2017
We present a new analysis of the interstellar protons toward the TeV $gamma$-ray SNR RX J0852.0$-$4622 (G266.2$-$1.2, Vela Jr.). We used the NANTEN2 $^{12}$CO($J$ = 1-0) and ATCA & Parkes HI datasets in order to derive the molecular and atomic gas as sociated with the TeV $gamma$-ray shell of the SNR. We find that atomic gas over a velocity range from $V_mathrm{LSR}$ = $-4$ km s$^{-1}$ to 50 km s$^{-1}$ or 60 km s$^{-1}$ is associated with the entire SNR, while molecular gas is associated with a limited portion of the SNR. The large velocity dispersion of the HI is ascribed to the expanding motion of a few HI shells overlapping toward the SNR but is not due to the Galactic rotation. The total masses of the associated HI and molecular gases are estimated to be $sim2.5 times 10^4 $ $M_{odot}$ and $sim10^3$ $M_{odot}$, respectively. A comparison with the H.E.S.S. TeV $gamma$-rays indicates that the interstellar protons have an average density around 100 cm$^{-3}$ and shows a good spatial correspondence with the TeV $gamma$-rays. The total cosmic ray proton energy is estimated to be $sim10^{48}$ erg for the hadronic $gamma$-ray production, which may still be an underestimate by a factor of a few due to a small filling factor of the SNR volume by the interstellar protons. This result presents a third case, after RX J1713.7$-$3946 and HESS J1731$-$347, of the good spatial correspondence between the TeV $gamma$-rays and the interstellar protons, lending further support for a hadronic component in the $gamma$-rays from young TeV $gamma$-ray SNRs.
3C 84 (NGC 1275) is a well-studied mis-aligned Active Galactic Nucleus (AGN), which has been active in Gamma rays since at least 2008. We have monitored the source at four wavelengths (14 mm, 7 mm, 3 mm and 2 mm) using the Korean VLBI network (KVN) s ince 2013 as part of the interferometric monitoring of $gamma$-ray bright AGN (iMOGABA) program. 3C 84 exhibits bright radio emission both near the central supermassive black hole (SMBH) feature known as C1 and from a moving feature located to the south known as C3. Other facilities have also detected these short-term variations above a slowly rising trend at shorter wavelengths, such as in Gamma ray and 1 mm total intensity light-curves. We find that the variations in the $gamma$ rays and 1 mm total intensity light-curves are correlated, with the $gamma$ rays leading and lagging the radio emission. Analysis of the 2 mm KVN data shows that both the Gamma rays and 1 mm total intensity short-term variations are better correlated with the SMBH region than C3, likely placing the short-term variations in C1. We interpret the emission as being due to the random alignment of spatially separated emission regions. We place the slowly rising trend in C3, consistent with previous results. Additionally, we report that since mid-2015, a large mm-wave radio flare has been occurring in C3, with a large Gamma ray flare coincident with the onset of this flare at all radio wavelengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا