ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-supervised Learning of Depth Inference for Multi-view Stereo

115   0   0.0 ( 0 )
 نشر من قبل Jiayu Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent supervised multi-view depth estimation networks have achieved promising results. Similar to all supervised approaches, these networks require ground-truth data during training. However, collecting a large amount of multi-view depth data is very challenging. Here, we propose a self-supervised learning framework for multi-view stereo that exploit pseudo labels from the input data. We start by learning to estimate depth maps as initial pseudo labels under an unsupervised learning framework relying on image reconstruction loss as supervision. We then refine the initial pseudo labels using a carefully designed pipeline leveraging depth information inferred from higher resolution images and neighboring views. We use these high-quality pseudo labels as the supervision signal to train the network and improve, iteratively, its performance by self-training. Extensive experiments on the DTU dataset show that our proposed self-supervised learning framework outperforms existing unsupervised multi-view stereo networks by a large margin and performs on par compared to the supervised counterpart. Code is available at https://github.com/JiayuYANG/Self-supervised-CVP-MVSNet.



قيم البحث

اقرأ أيضاً

88 - Yao Yao , Zixin Luo , Shiwei Li 2019
Deep learning has recently demonstrated its excellent performance for multi-view stereo (MVS). However, one major limitation of current learned MVS approaches is the scalability: the memory-consuming cost volume regularization makes the learned MVS h ard to be applied to high-resolution scenes. In this paper, we introduce a scalable multi-view stereo framework based on the recurrent neural network. Instead of regularizing the entire 3D cost volume in one go, the proposed Recurrent Multi-view Stereo Network (R-MVSNet) sequentially regularizes the 2D cost maps along the depth direction via the gated recurrent unit (GRU). This reduces dramatically the memory consumption and makes high-resolution reconstruction feasible. We first show the state-of-the-art performance achieved by the proposed R-MVSNet on the recent MVS benchmarks. Then, we further demonstrate the scalability of the proposed method on several large-scale scenarios, where previous learned approaches often fail due to the memory constraint. Code is available at https://github.com/YoYo000/MVSNet.
We propose a cost volume-based neural network for depth inference from multi-view images. We demonstrate that building a cost volume pyramid in a coarse-to-fine manner instead of constructing a cost volume at a fixed resolution leads to a compact, li ghtweight network and allows us inferring high resolution depth maps to achieve better reconstruction results. To this end, we first build a cost volume based on uniform sampling of fronto-parallel planes across the entire depth range at the coarsest resolution of an image. Then, given current depth estimate, we construct new cost volumes iteratively on the pixelwise depth residual to perform depth map refinement. While sharing similar insight with Point-MVSNet as predicting and refining depth iteratively, we show that working on cost volume pyramid can lead to a more compact, yet efficient network structure compared with the Point-MVSNet on 3D points. We further provide detailed analyses of the relation between (residual) depth sampling and image resolution, which serves as a principle for building compact cost volume pyramid. Experimental results on benchmark datasets show that our model can perform 6x faster and has similar performance as state-of-the-art methods. Code is available at https://github.com/JiayuYANG/CVP-MVSNet
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations about the effectiveness of the pre text task in self-supervised MVS. To this end, we propose to estimate epistemic uncertainty in self-supervised MVS, accounting for what the model ignores. Specially, the limitations can be categorized into two types: ambiguious supervision in foreground and invalid supervision in background. To address these issues, we propose a novel Uncertainty reduction Multi-view Stereo (UMVS) framework for self-supervised learning. To alleviate ambiguous supervision in foreground, we involve extra correspondence prior with a flow-depth consistency loss. The dense 2D correspondence of optical flows is used to regularize the 3D stereo correspondence in MVS. To handle the invalid supervision in background, we use Monte-Carlo Dropout to acquire the uncertainty map and further filter the unreliable supervision signals on invalid regions. Extensive experiments on DTU and Tank&Temples benchmark show that our U-MVS framework achieves the best performance among unsupervised MVS methods, with competitive performance with its supervised opponents.
As a newly emerging unsupervised learning paradigm, self-supervised learning (SSL) recently gained widespread attention, which usually introduces a pretext task without manual annotation of data. With its help, SSL effectively learns the feature repr esentation beneficial for downstream tasks. Thus the pretext task plays a key role. However, the study of its design, especially its essence currently is still open. In this paper, we borrow a multi-view perspective to decouple a class of popular pretext tasks into a combination of view data augmentation (VDA) and view label classification (VLC), where we attempt to explore the essence of such pretext task while providing some insights into its design. Specifically, a simple multi-view learning framework is specially designed (SSL-MV), which assists the feature learning of downstream tasks (original view) through the same tasks on the augmented views. SSL-MV focuses on VDA while abandons VLC, empirically uncovering that it is VDA rather than generally considered VLC that dominates the performance of such SSL. Additionally, thanks to replacing VLC with VDA tasks, SSL-MV also enables an integrated inference combining the predictions from the augmented views, further improving the performance. Experiments on several benchmark datasets demonstrate its advantages.
We present a learnt system for multi-view stereopsis. In contrast to recent learning based methods for 3D reconstruction, we leverage the underlying 3D geometry of the problem through feature projection and unprojection along viewing rays. By formula ting these operations in a differentiable manner, we are able to learn the system end-to-end for the task of metric 3D reconstruction. End-to-end learning allows us to jointly reason about shape priors while conforming geometric constraints, enabling reconstruction from much fewer images (even a single image) than required by classical approaches as well as completion of unseen surfaces. We thoroughly evaluate our approach on the ShapeNet dataset and demonstrate the benefits over classical approaches as well as recent learning based methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا