ﻻ يوجد ملخص باللغة العربية
An appropriate user interface to collect human demonstration data for deformable object manipulation has been mostly overlooked in the literature. We present an interaction design for demonstrating cloth folding to robots. Users choose pick and place points on the cloth and can preview a visualization of a simulated cloth before real-robot execution. Two interfaces are proposed: A 2D display-and-mouse interface where points are placed by clicking on an image of the cloth, and a 3D Augmented Reality interface where the chosen points are placed by hand gestures. We conduct a user study with 18 participants, in which each user completed two sequential folds to achieve a cloth goal shape. Results show that while both interfaces were acceptable, the 3D interface was found to be more suitable for understanding the task, and the 2D interface suitable for repetition. Results also found that fold previews improve three key metrics: task efficiency, the ability to predict the final shape of the cloth and overall user satisfaction.
In this paper, we present a toolchain to design, execute, and verify robot behaviors. The toolchain follows the guidelines defined by the EU H2020 project RobMoSys and encodes the robot deliberation as a Behavior Tree (BT), a directed tree where the
For the majority of tasks performed by traditional serial robot arms, such as bin picking or pick and place, only two or three degrees of freedom (DOF) are required for motion; however, by augmenting the number of degrees of freedom, further dexterit
The number of tools for dynamics simulation has grown in the last years. It is necessary for the robotics community to have elements to ponder which of the available tools is the best for their research. As a complement to an objective and quantitati
This work introduces an approach for automatic hair combing by a lightweight robot. For people living with limited mobility, dexterity, or chronic fatigue, combing hair is often a difficult task that negatively impacts personal routines. We propose a
Simultaneous Localization and Mapping (SLAM) has been considered as a solved problem thanks to the progress made in the past few years. However, the great majority of LiDAR-based SLAM algorithms are designed for a specific type of payload and therefo