ﻻ يوجد ملخص باللغة العربية
An ordinary differential equation (ODE) model, whose regression curves are a set of solution curves for some ODEs, poses a challenge in parameter estimation. The challenge, due to the frequent absence of analytic solutions and the complicated likelihood surface, tends to be more severe especially for larger models with many parameters and variables. Yang and Lee (2021) proposed a state-space model with variational Bayes (SSVB) for ODE, capable of fast and stable estimation in somewhat large ODE models. The method has shown excellent performance in parameter estimation but has a weakness of underestimation of the posterior covariance, which originates from the mean-field variational method. This paper proposes a way to overcome the weakness by using the Laplace approximation. In numerical experiments, the covariance modified by the Laplace approximation showed a high degree of improvement when checked against the covariances obtained by a standard Markov chain Monte Carlo method. With the improved covariance estimation, the SSVB renders fairly accurate posterior approximations.
Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, opti
Gaussian latent variable models are a key class of Bayesian hierarchical models with applications in many fields. Performing Bayesian inference on such models can be challenging as Markov chain Monte Carlo algorithms struggle with the geometry of the
Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densit
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the
This paper introduces a Laplace approximation to Bayesian inference in regression models for multivariate response variables. We focus on Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness an