ترغب بنشر مسار تعليمي؟ اضغط هنا

Laplace-aided variational inference for differential equation models

70   0   0.0 ( 0 )
 نشر من قبل Hyunjoo Yang
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

An ordinary differential equation (ODE) model, whose regression curves are a set of solution curves for some ODEs, poses a challenge in parameter estimation. The challenge, due to the frequent absence of analytic solutions and the complicated likelihood surface, tends to be more severe especially for larger models with many parameters and variables. Yang and Lee (2021) proposed a state-space model with variational Bayes (SSVB) for ODE, capable of fast and stable estimation in somewhat large ODE models. The method has shown excellent performance in parameter estimation but has a weakness of underestimation of the posterior covariance, which originates from the mean-field variational method. This paper proposes a way to overcome the weakness by using the Laplace approximation. In numerical experiments, the covariance modified by the Laplace approximation showed a high degree of improvement when checked against the covariances obtained by a standard Markov chain Monte Carlo method. With the improved covariance estimation, the SSVB renders fairly accurate posterior approximations.



قيم البحث

اقرأ أيضاً

Stochastic differential equation mixed-effects models (SDEMEMs) are flexible hierarchical models that are able to account for random variability inherent in the underlying time-dynamics, as well as the variability between experimental units and, opti onally, account for measurement error. Fully Bayesian inference for state-space SDEMEMs is performed, using data at discrete times that may be incomplete and subject to measurement error. However, the inference problem is complicated by the typical intractability of the observed data likelihood which motivates the use of sampling-based approaches such as Markov chain Monte Carlo. A Gibbs sampler is proposed to target the marginal posterior of all parameter values of interest. The algorithm is made computationally efficient through careful use of blocking strategies and correlated pseudo-marginal Metropolis-Hastings steps within the Gibbs scheme. The resulting methodology is flexible and is able to deal with a large class of SDEMEMs. The methodology is demonstrated on three case studies, including tumor growth dynamics and neuronal data. The gains in terms of increased computational efficiency are model and data dependent, but unless bespoke sampling strategies requiring analytical derivations are possible for a given model, we generally observe an efficiency increase of one order of magnitude when using correlated particle methods together with our blocked-Gibbs strategy.
Gaussian latent variable models are a key class of Bayesian hierarchical models with applications in many fields. Performing Bayesian inference on such models can be challenging as Markov chain Monte Carlo algorithms struggle with the geometry of the resulting posterior distribution and can be prohibitively slow. An alternative is to use a Laplace approximation to marginalize out the latent Gaussian variables and then integrate out the remaining hyperparameters using dynamic Hamiltonian Monte Carlo, a gradient-based Markov chain Monte Carlo sampler. To implement this scheme efficiently, we derive a novel adjoint method that propagates the minimal information needed to construct the gradient of the approximate marginal likelihood. This strategy yields a scalable differentiation method that is orders of magnitude faster than state of the art differentiation techniques when the hyperparameters are high dimensional. We prototype the method in the probabilistic programming framework Stan and test the utility of the embedded Laplace approximation on several models, including one where the dimension of the hyperparameter is $sim$6,000. Depending on the cases, the benefits can include an alleviation of the geometric pathologies that frustrate Hamiltonian Monte Carlo and a dramatic speed-up.
119 - Jean Daunizeau 2017
Variational approaches to approximate Bayesian inference provide very efficient means of performing parameter estimation and model selection. Among these, so-called variational-Laplace or VL schemes rely on Gaussian approximations to posterior densit ies on model parameters. In this note, we review the main variants of VL approaches, that follow from considering nonlinear models of continuous and/or categorical data. En passant, we also derive a few novel theoretical results that complete the portfolio of existing analyses of variational Bayesian approaches, including investigations of their asymptotic convergence. We also suggest practical ways of extending existing VL approaches to hierarchical generative models that include (e.g., precision) hyperparameters.
Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophisticated inference on the PLTF framework. We illustrate our approach on model order selection and link prediction.
This paper introduces a Laplace approximation to Bayesian inference in regression models for multivariate response variables. We focus on Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness an d heteroscedasticity, without having to transform the data. These data, which mainly consist of proportions or percentages of disjoint categories, are widely known as compositional data and are common in areas such as ecology, geology, and psychology. We provide both the theoretical foundations and a description of how this Laplace approximation can be implemented in the case of Dirichlet regression. The paper also introduces the package dirinla in the R-language that extends the INLA package, which can not deal directly with multivariate likelihoods like the Dirichlet likelihood. Simulation studies are presented to validate the good behaviour of the proposed method, while a real data case-study is used to show how this approach can be applied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا