ﻻ يوجد ملخص باللغة العربية
Spin-helical states, which arise in quasi-one-dimensional (1D) channels with spin-orbital (SO) coupling, underpin efforts to realize topologically-protected quantum bits based on Majorana modes in semiconductor nanowires. Detecting helical states is challenging due to non-idealities present in real devices. Here we show by means of tight-binding calculations that by using ferromagnetic contacts it is possible to detect helical modes with high sensitivity even in the presence of realistic device effects, such as quantum interference. This is possible because of the spin-selective transmission properties of helical modes. In addition, we show that spin-polarized contacts provide a unique path to investigate the spin texture and spin-momentum locking properties of helical states. Our results are of interest not only for the ongoing development of Majorana qubits, but also as for realizing possible spin-based quantum devices, such as quantum spin modulators and interconnects based on spin-helical channels.
Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are re
Landauers principle states that erasure of each bit of information in a system requires at least a unit of energy $k_B T ln 2$ to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount $k_B T ln 2$, in k
We show theoretically and experimentally the existence of a new quantum interference(QI) effect between the electron-hole interactions and the scattering by a single Mn impurity. Theoretical model, including electron-valence hole correlations, the sh
We report the realization of a read-write device out of the ferromagnetic semiconductor (Ga,Mn)As as the first step to fundamentally new information processing paradigm. Writing the magnetic state is achieved by current-induced switching and read-out
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron