ﻻ يوجد ملخص باللغة العربية
Ghost imaging (GI) has been paid attention gradually because of its lens-less imaging capability, turbulence-free imaging and high detection sensitivity. However, low image quality and slow imaging speed restrict the application process of GI. In this paper, we propose a improved GI method based on Denoising Convolutional Neural Networks (DnCNN). Inspired by the corresponding between input (noisy image) and output (residual image) in DnCNN, we construct the mapping between speckles sequence and the corresponding noise distribution in GI through training. Then, the same speckles sequence is employed to illuminate unknown targets, and a de-noising target image will be obtained. The proposed method can be regarded as a general method for GI. Under two sampling rates, extensive experiments are carried out to compare with traditional GI method (basic correlation and compressed sensing) and DnCNN method on three data sets. Moreover, we set up a physical GI experiment system to verify the proposed method. The results show that the proposed method achieves promising performance.
Fluorescence lifetime imaging microscopy (FLIM) systems are limited by their slow processing speed, low signal-to-noise ratio (SNR), and expensive and challenging hardware setups. In this work, we demonstrate applying a denoising convolutional networ
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability, especially with a deep configuration. However, their efficacy is inherently limited owing to their homogenous netw
The traditional image compressors, e.g., BPG and H.266, have achieved great image and video compression quality. Recently, Convolutional Neural Network has been used widely in image compression. We proposed an attention-based convolutional neural net
Deep convolutional networks often append additive constant (bias) terms to their convolution operations, enabling a richer repertoire of functional mappings. Biases are also used to facilitate training, by subtracting mean response over batches of tr
Compressed Sensing MRI (CS-MRI) has shown promise in reconstructing under-sampled MR images, offering the potential to reduce scan times. Classical techniques minimize a regularized least-squares cost function using an expensive iterative optimizatio