ترغب بنشر مسار تعليمي؟ اضغط هنا

The Time-Dependent Distribution of Optical Polarization Angle Changes in Blazars

131   0   0.0 ( 0 )
 نشر من قبل Sebastian Kiehlmann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

At optical wavelengths, blazar Electric Vector Position Angle (EVPA) rotations linked with gamma-ray activity have been the subject of intense interest and systematic investigation for over a decade. One difficulty in the interpretation of EVPA rotations is the inherent 180{deg} ambiguity in the measurements. It is therefore essential, when studying EVPA rotations, to ensure that the typical time-interval between successive observations -- i.e. the cadence -- is short enough to ensure that the correct modulo 180{deg} value is selected. This optimal cadence depends on the maximum intrinsic EVPA rotation speed in blazars, which is currently not known. In this paper we address the following questions for the RoboPol sample: What range of rotation speeds for rotations greater than 90{deg} can we expect? What observation cadence is required to detect such rotations? Have rapid rotations been missed in EVPA rotation studies thus far? What fraction of data is affected by the ambiguity? And how likely are detected rotations affected by the ambiguity? We answer these questions with three seasons of optical polarimetric observations of a statistical sample of blazars sampled weekly with the RoboPol instrument and an additional season with daily observations. We model the distribution of EVPA changes on time scales from 1-30 days and estimate the fraction of changes exceeding 90{deg}. We show that at least daily observations are necessary to measure >96% of optical EVPA variability in the RoboPol sample of blazars correctly and that intra-day observations are needed to measure the fastest rotations that have been seen thus far.

قيم البحث

اقرأ أيضاً

Rotations of the electric vector position angle (EVPA) in blazars are often close to an integral multiple of 180$^circ$. There are multiple examples of this in the literature, and our analysis here, of the optical polarization data from the RoboPol m onitoring program, strengthens the evidence by showing that $npi$ rotations occur more frequently than expected by chance. We explain this with a model consisting of two polarized emission components: a jet that is constant in time, and a burst that is variable. The EVPA of the combination is $rm EVPA_{jet}$ at both the beginning and the end of the burst, so the net rotation across the burst must be $npi$. Examples are analyzed on the Stokes plane, where the winding number for the Stokes vector of the combination gives the value of $n$. The main conclusion is that the EVPA rotation can be much larger than the physical rotation of the emission region around the axis of the jet, but this requires the EVPAs of the jet and the burst to be nearly orthogonal. A shock-in-jet calculation by Zhang et al. can provide a physical model for our toy model, and in addition automatically gives the needed orthogonality. The model is illustrated with data on OJ287 published by Myserlis et al., and we suggest that the large rapid EVPA rotation seen there might be a phase effect and not representative of a physical rotation.
Over the past few years, several occasions of large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ra y flares and they have attracted considerable attention, as they could allow one to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C279 is one of the most prominent examples showing this behaviour. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. 3C279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth approx. 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. We conclude that during the two different optical flux states, two different processes govern the polarization variation, possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.
We present a new set of optical polarization plane rotations in blazars, observed during the third year of operation of RoboPol. The entire set of rotation events discovered during three years of observations is analysed with the aim of determining w hether these events are inherent in all blazars. It is found that the frequency of the polarization plane rotations varies widely among blazars. This variation cannot be explained either by a difference in the relativistic boosting or by selection effects caused by a difference in the average fractional polarization. We conclude that the rotations are characteristic of a subset of blazars and that they occur as a consequence of their intrinsic properties.
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such ev ents, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realised in nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا