ﻻ يوجد ملخص باللغة العربية
Segmentation of pathological images is essential for accurate disease diagnosis. The quality of manual labels plays a critical role in segmentation accuracy; yet, in practice, the labels between pathologists could be inconsistent, thus confusing the training process. In this work, we propose a novel label re-weighting framework to account for the reliability of different experts labels on each pixel according to its surrounding features. We further devise a new attention heatmap, which takes roughness as prior knowledge to guide the model to focus on important regions. Our approach is evaluated on the public Gleason 2019 datasets. The results show that our approach effectively improves the models robustness against noisy labels and outperforms state-of-the-art approaches.
Histopathology has played an essential role in cancer diagnosis. With the rapid advances in convolutional neural networks (CNN). Various CNN-based automated pathological image segmentation approaches have been developed in computer-assisted pathologi
Histopathological image analysis is an essential process for the discovery of diseases such as cancer. However, it is challenging to train CNN on whole slide images (WSIs) of gigapixel resolution considering the available memory capacity. Most of the
Retinal vessel segmentation from retinal images is an essential task for developing the computer-aided diagnosis system for retinal diseases. Efforts have been made on high-performance deep learning-based approaches to segment the retinal images in a
Despite that deep learning has achieved state-of-the-art performance for medical image segmentation, its success relies on a large set of manually annotated images for training that are expensive to acquire. In this paper, we propose an annotation-ef
Manually segmenting the hepatic vessels from Computer Tomography (CT) is far more expertise-demanding and laborious than other structures due to the low-contrast and complex morphology of vessels, resulting in the extreme lack of high-quality labeled