ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Conductivities and Mechanical Properties of Epoxy Resin as a Function of the Degree of Cross-linking

85   0   0.0 ( 0 )
 نشر من قبل Xiao Wan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Epoxy resins are widely used polymer matrices for numerous applications. Despite substantial advances, the molecular-level knowledge-base required to exploit these materials to their full potential remains limited. A deeper comprehension of structure/property relationships in epoxy resins at the molecular level is critical to progressing these efforts. It can be laborious, if not impractical, to elucidate these relationships based on experiments alone. Here, molecular dynamics simulations are used to calculate and compare thermal conductivities and mechanical properties of an exemplar epoxy resin, Bisphenol F cross-linked with Diethyl Toluene Diamine, revealing these inter-relationships. Both elastic modulus and thermal transport of the epoxy resin show an increase with greater cross-linking. Specifically, decomposition of the thermal conductivity into different force contributions suggests that the bonded term contributes to an increase in the heat flux. These outcomes provide a foundation for designing and fabricating customized epoxy resins with desirable thermal and mechanical attributes.



قيم البحث

اقرأ أيضاً

The ultra-low thermal conductivity (~0.3 Wm-1K-1) of amorphous epoxy resins significantly limits their applications in electronics. Conventional top-down methods e.g. electrospinning usually result in aligned structure for linear polymers thus satisf actory enhancement on thermal conductivity, but they are deficient for epoxy resin polymerized by monomers and curing agent due to completely different cross-linked network structure. Here, we proposed a bottom-up strategy, namely parallel-linking method, to increase the intrinsic thermal conductivity of bulk epoxy resin. Through equilibrium molecular dynamics simulations, we reported on a high thermal conductivity value of parallel-linked epoxy resin (PLER) as 0.80 Wm-1K-1, more than twofold higher than that of amorphous structure. Furthermore, by applying uniaxial tensile strains along the intra-chain direction, a further enhancement in thermal conductivity was obtained, reaching 6.45 Wm-1K-1. Interestingly, we also observed that the inter-chain thermal conductivities decrease with increasing strain. The single chain of epoxy resin was also investigated and, surprisingly, its thermal conductivity was boosted by 30 times through tensile strain, as high as 33.8 Wm-1K-1. Our study may provide a new insight on the design and fabrication of epoxy resins with high thermal conductivity.
Epoxy resins are used extensively in composite materials for a wide range of engineering applications, including structural components of aircraft and spacecraft. The processing of fiber-reinforced epoxy composite structures requires carefully select ed heating and cooling cycles to fully cure the resin and form strong crosslinked networks. To fully optimize the processing parameters for effective epoxy monomer crosslinking and final product integrity, the evolution of mechanical properties of epoxies during processing must be comprehensively understood. Because the full experimental characterization of these properties as a function of the degree of cure is difficult and time-consuming, efficient computational predictive tools are needed. The objective of this research is to develop an experimentally validated Molecular Dynamics (MD) modeling method, which incorporates a reactive force field, to accurately predict the thermo-mechanical properties of an epoxy resin as a function of the degree of cure. Experimental rheometric and mechanical testing are used to validate an MD model which is subsequently used to predict mass density, shrinkage, elastic properties, and yield strength as a function of the degree of cure. The results indicate that each of the physical and mechanical properties evolve uniquely during the crosslinking process. These results are important for future processing modeling efforts.
Due to their outstanding mechanical properties, diamond and diamond-like materials find significant technological applications ranging from well-established industrial fields (cutting tools, coatings, etc.) to more advanced mechanical devices as micr o- and nano-electromechanical systems. The use of energetic ions is a powerful and versatile tool to fabricate three-dimensional micro-mechanical structures. In this context, it is of paramount importance to have an accurate knowledge of the effects of ion-induced structural damage on the mechanical properties of this material, firstly to predict potential undesired side-effects of the ion implantation process, and possibly to tailor the desired mechanical properties of the fabricated devices. We present an Atomic Force Microscopy (AFM) characterization of free-standing cantilevers in single-crystal diamond obtained by a FIB-assisted lift-off technique, which allows a determination of the Youngs modulus of the diamond crystal after the MeV ion irradiation process concurrent to the fabrication of the microstructures, and subsequent thermal annealing. The AFM measurements were performed with the beam-bending technique and show that the thermal annealing process allows for an effective recovery of the mechanical properties of the pristine crystal.
We investigated through fully atomistic molecular dynamics simulations, the mechanical behavior (compressive and tensile) and energy absorption properties of two families (primitive (P688 and P8bal) and gyroid (G688 and G8bal)) of carbon-based schwar zites. Our results show that all schwarzites can be compressed (with almost total elastic recovery) without fracture to more than 50%, one of them can be even remarkably compressed up to 80%. One of the structures (G8bal) presents negative Poissons ratio value (auxetic behavior). The crush force efficiency, the stroke efficiency and the specific energy absorption (SEA) values show that schwarzites can be effective energy absorber materials. Although the same level of deformation without fracture observed in the compressive case is not observed for the tensile case, it is still very high (30-40%). The fracture dynamics show extensive structural reconstructions with the formation of linear atomic chains (LACs).
Helical amorphous nanosprings have attracted particular interest due to their special mechanical properties. In this work we present a simple model, within the framework of the Kirchhoff rod model, for investigating the structural properties of nanos prings having asymmetric cross section. We have derived expressions that can be used to obtain the Youngs modulus and Poissons ratio of the nanospring material composite. We also address the importance of the presence of a catalyst in the growth process of amorphous nanosprings in terms of the stability of helical rods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا