ﻻ يوجد ملخص باللغة العربية
As speech-enabled devices such as smartphones and smart speakers become increasingly ubiquitous, there is growing interest in building automatic speech recognition (ASR) systems that can run directly on-device; end-to-end (E2E) speech recognition models such as recurrent neural network transducers and their variants have recently emerged as prime candidates for this task. Apart from being accurate and compact, such systems need to decode speech with low user-perceived latency (UPL), producing words as soon as they are spoken. This work examines the impact of various techniques - model architectures, training criteria, decoding hyperparameters, and endpointer parameters - on UPL. Our analyses suggest that measures of model size (parameters, input chunk sizes), or measures of computation (e.g., FLOPS, RTF) that reflect the models ability to process input frames are not always strongly correlated with observed UPL. Thus, conventional algorithmic latency measurements might be inadequate in accurately capturing latency observed when models are deployed on embedded devices. Instead, we find that factors affecting token emission latency, and endpointing behavior have a larger impact on UPL. We achieve the best trade-off between latency and word error rate when performing ASR jointly with endpointing, while utilizing the recently proposed alignment regularization mechanism.
End-to-end models are favored in automatic speech recognition (ASR) because of its simplified system structure and superior performance. Among these models, recurrent neural network transducer (RNN-T) has achieved significant progress in streaming on
Recurrent transducer models have emerged as a promising solution for speech recognition on the current and next generation smart devices. The transducer models provide competitive accuracy within a reasonable memory footprint alleviating the memory c
Often, the storage and computational constraints of embeddeddevices demand that a single on-device ASR model serve multiple use-cases / domains. In this paper, we propose aFlexibleTransducer(FlexiT) for on-device automatic speech recognition to flexi
We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine the
The majority of existing speech emotion recognition models are trained and evaluated on a single corpus and a single language setting. These systems do not perform as well when applied in a cross-corpus and cross-language scenario. This paper present