ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam-driven ECH waves: A parametric study

171   0   0.0 ( 0 )
 نشر من قبل Xu Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron cyclotron harmonic (ECH) waves play a significant role in driving the diffuse aurora, which constitutes more than 75% of the particle energy input into the ionosphere. ECH waves in magnetospheric plasmas have long been thought to be excited predominantly by the loss cone anisotropy (velocity-space gradients) that arises naturally in a planetary dipole field. Recent THEMIS observations, however, indicate that an electron beam can also excite such waves in Earths magnetotail. The ambient and beam plasma conditions under which electron beam excitation can take place are unknown. Knowledge of such conditions would allow us to further explore the relative contribution of this excitation mechanism to ECH wave scattering of magnetospheric electrons at Earth and the outer planets. Using the hot plasma dispersion relation, we address the nature of beam-driven ECH waves and conduct a comprehensive parametric survey of this instability. We find that growth is provided by beam electron cyclotron resonances of both first and higher orders. We also find that these waves are unstable under a wide range of plasma conditions. The growth rate increases with beam density, beam velocity, and hot electron temperature; it decreases with increasing beam temperature and beam temperature anisotropy, hot electron density, and cold electron density and temperature. Such conditions abound in Earths magnetotail, where magnetospheric electrons heated by earthward convection and magnetic reconnection coexist with colder ionospheric electrons.



قيم البحث

اقرأ أيضاً

342 - Xin Tao , Fulvio Zonca , 2021
Whistler mode chorus waves are quasi-coherent electromagnetic emissions with frequency chirping. Various models have been proposed to understand the chirping mechanism, which is a long-standing problem in space plasmas. Based on analysis of effective wave growth rate and electron phase space dynamics in a self-consistent particle simulation, we propose here a phenomenological model called the Trap-Release-Amplify (TaRA) model for chorus. In this model, phase space structures of correlated electrons are formed by nonlinear wave particle interactions, which mainly occur in the downstream. When released from the wave packet in the upstream, these electrons selectively amplify new emissions which satisfy the phase-locking condition to maximize wave power transfer, leading to frequency chirping. The phase-locking condition at the release point gives a frequency chirping rate that is fully consistent with the one by Helliwell in case of a nonuniform background magnetic field. The nonlinear wave particle interaction part of the TaRA model results in a chirping rate that is proportional to wave amplitude, a conclusion originally reached by Vomvoridis et al. Therefore, the TaRA model unifies two different results from seemingly unrelated studies. Furthermore, the TaRA model naturally explains fine structures of chorus waves, including subpackets and bandwidth, and their evolution through dynamics of phase-trapped electrons. Finally, we suggest that this model could be applied to explain other related phenomena, including frequency chirping of chorus in a uniform background magnetic field and of electromagnetic ion cyclotron waves in the magnetosphere.
118 - A. Aimidula , P. Zhang 2018
In the past decades, beam-driven plasma wakefield acceleration (PWFA) experiments have seen remarkable progress by using high-energy particle beams such as electron, positron and proton beams to drive wakes in neutral gas or pre-ionized plasma. This review highlights a few recent experiments in the world to compare experiment parameters and results.
A long, relativistic charged particle beam propagating in a plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the accelerating fie ld is shown to be significantly less than the drive beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly-coupled regime, dephasing is reached in less than four e-foldings, independent of beam-plasma parameters.
The linear dispersion properties of transverse shear waves in a strongly coupled dusty plasma are experimentally studied by exciting them in a controlled manner with a variable frequency external source. The dusty plasma is maintained in the strongly coupled fluid regime with (1 < Gamma << Gamma_c) where Gamma is the Coulomb coupling parameter and Gamma_c is the crystallization limit. A dispersion relation for the transverse waves is experimentally obtained over a frequency range of 0.1 Hz to 2 Hz and found to show good agreement with viscoelastic theoretical results.
We study the applicability of the derivative nonlinear Schr{o}dinger (DNLS) equation, for the evolution of high frequency nonlinear waves, observed at the foreshock region of the terrestrial quasi-parallel bow shock. The use of a pseudo-potential is elucidated and, in particular, the importance of canonical representation in the correct interpretation of solutions in this formulation is discussed. Numerical solutions of the DNLS equation are then compared directly with the wave forms observed by Cluster spacecraft. Non harmonic slow variations are filtered out by applying the empirical mode decomposition. We find large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency, followed in time by nearly harmonic low amplitude fluctuations. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfv{e}n speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا