ﻻ يوجد ملخص باللغة العربية
Research and development in computer science and statistics have produced increasingly sophisticated software interfaces for interactive and exploratory analysis, optimized for easy pattern finding and data exposure. But design philosophies that emphasize exploration over other phases of analysis risk confusing a need for flexibility with a conclusion that exploratory visual analysis is inherently model-free and cannot be formalized. We describe how without a grounding in theories of human statistical inference, research in exploratory visual analysis can lead to contradictory interface objectives and representations of uncertainty that can discourage users from drawing valid inferences. We discuss how the concept of a model check in a Bayesian statistical framework unites exploratory and confirmatory analysis, and how this understanding relates to other proposed theories of graphical inference. Viewing interactive analysis as driven by model checks suggests new directions for software and empirical research around exploratory and visual analysis. For example, systems should enable specifying and explicitly comparing data to null and other reference distributions and better representations of uncertainty. Implications of Bayesian and other theories of graphical inference should be tested against outcomes of interactive analysis by people to drive theory development.
From colored pixels to hyper-realistic 3D landscapes of virtual reality, video games have evolved immensely over the last few decades. However, video game input still requires two-handed dexterous finger manipulations for simultaneous joystick and tr
Many visual analytics systems allow users to interact with machine learning models towards the goals of data exploration and insight generation on a given dataset. However, in some situations, insights may be less important than the production of an
We derive Laplace-approximated maximum likelihood estimators (GLAMLEs) of parameters in our Graph Generalized Linear Latent Variable Models. Then, we study the statistical properties of GLAMLEs when the number of nodes $n_V$ and the observed times of
Objective: Provide guidance on sample size considerations for developing predictive models by empirically establishing the adequate sample size, which balances the competing objectives of improving model performance and reducing model complexity as w
Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques