ترغب بنشر مسار تعليمي؟ اضغط هنا

Adjusted composite likelihood for robust Bayesian meta-analysis

56   0   0.0 ( 0 )
 نشر من قبل Michele Lambardi Di San Miniato
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

A composite likelihood is a non-genuine likelihood function that allows to make inference on limited aspects of a model, such as marginal or conditional distributions. Composite likelihoods are not proper likelihoods and need therefore calibration for their use in inference, from both a frequentist and a Bayesian perspective. The maximizer to the composite likelihood can serve as an estimator and its variance is assessed by means of a suitably defined sandwich matrix. In the Bayesian setting, the composite likelihood can be adjusted by means of magnitude and curvature methods. Magnitude methods imply raising the likelihood to a constant, while curvature methods imply evaluating the likelihood at a different point by translating, rescaling and rotating the parameter vector. Some authors argue that curvature methods are more reliable in general, but others proved that magnitude methods are sufficient to recover, for instance, the null distribution of a test statistic. We propose a simple calibration for the marginal posterior distribution of a scalar parameter of interest which is invariant to monotonic and smooth transformations. This can be enough for instance in medical statistics, where a single scalar effect measure is often the target.



قيم البحث

اقرأ أيضاً

This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influ ential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
128 - Jiaqi Li , Liya Fu 2021
As an effective nonparametric method, empirical likelihood (EL) is appealing in combining estimating equations flexibly and adaptively for incorporating data information. To select important variables and estimating equations in the sparse high-dimen sional model, we consider a penalized EL method based on robust estimating functions by applying two penalty functions for regularizing the regression parameters and the associated Lagrange multipliers simultaneously, which allows the dimensionalities of both regression parameters and estimating equations to grow exponentially with the sample size. A first inspection on the robustness of estimating equations contributing to the estimating equations selection and variable selection is discussed from both theoretical perspective and intuitive simulation results in this paper. The proposed method can improve the robustness and effectiveness when the data have underlying outliers or heavy tails in the response variables and/or covariates. The robustness of the estimator is measured via the bounded influence function, and the oracle properties are also established under some regularity conditions. Extensive simulation studies and a yeast cell data are used to evaluate the performance of the proposed method. The numerical results reveal that the robustness of sparse estimating equations selection fundamentally enhances variable selection accuracy when the data have heavy tails and/or include underlying outliers.
Ideally, a meta-analysis will summarize data from several unbiased studies. Here we consider the less than ideal situation in which contributing studies may be compromised by measurement error. Measurement error affects every study design, from rando mized controlled trials to retrospective observational studies. We outline a flexible Bayesian framework for continuous outcome data which allows one to obtain appropriate point and interval estimates with varying degrees of prior knowledge about the magnitude of the measurement error. We also demonstrate how, if individual-participant data (IPD) are available, the Bayesian meta-analysis model can adjust for multiple participant-level covariates, measured with or without measurement error.
302 - Olha Bodnar , Taras Bodnar 2021
Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is deduced by assigning two noninformative priors to the model parameter, namely the Berger and Bernardo reference prior and the Jeffreys prior, whose analytical expressions are obtained under weak distributional assumptions. It is shown that the only condition needed for the posterior to be proper is that the sample size is larger than the dimension of the data-generating model, independently of the class of elliptically contoured distributions used in the definition of the generalized multivariate random effects model. The theoretical findings of the paper are applied to real data consisting of ten studies about the effectiveness of hypertension treatment for reducing blood pressure where the treatment effects on both the systolic blood pressure and diastolic blood pressure are investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا