ﻻ يوجد ملخص باللغة العربية
Monolayer FeSe on SrTiO$_3$ superconducts with reported $T_mathrm{c}$ as high as 100 K, but the dramatic interfacial $T_mathrm{c}$ enhancement remains poorly understood. Oxygen vacancies in SrTiO$_3$ are known to enhance the interfacial electron doping, electron-phonon coupling, and superconducting gap, but the detailed mechanism is unclear. Here we apply scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) to FeSe/SrTiO$_3$ to image the diffusion of selenium into SrTiO$_3$ to an unexpected depth of several unit cells, consistent with the simultaneously observed depth profile of oxygen vacancies. Our density functional theory (DFT) calculations support the crucial role of oxygen vacancies in facilitating the thermally driven Se diffusion. In contrast to excess Se in the FeSe monolayer or FeSe/SrTiO$_3$ interface that is typically removed during post-growth annealing, the diffused Se remains in the top few unit cells of the SrTiO$_3$ bulk after the extended post-growth annealing that is necessary to achieve superconductivity. Thus the unexpected Se in SrTiO$_3$ may contribute to the interfacial electron doping and electron-phonon coupling that enhance $T_mathrm{c}$, suggesting another important role for oxygen vacancies as facilitators of Se diffusion.
In many unconventional superconductors, the presence of a pseudogap - a suppression in the electronic density of states extending above the critical temperature - has been a long-standing mystery. Here, we employ combined textit{in situ} electrical t
Superconductors with topological surface or edge states have been intensively explored for the prospect of realizing Majorana bound states, which obey non-Abelian statistics and are crucial for topological quantum computation. The traditional routes
We use density functional theory to study the structure and the band structure of the monolayer FeSe deposited on the SrTiO$_3$ substrate with the additional layer of Se between them. Top of the SrTiO$_3$ is formed by the double TiO layer with and wi
Localization of electrons in the two-dimensional electron gas at the LaAlO$_3$/SrTiO$_3$ interface is investigated by varying the channel thickness in order to establish the nature of the conducting channel. Layers of SrTiO$_3$ were grown on NdGaO$_3
Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconduc