ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Pumping of an Easy-Plane Antiferromagnet Enhanced by Dzyaloshinskii-Moriya Interaction

711   0   0.0 ( 0 )
 نشر من قبل Chunhui Du
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, antiferromagnets have received revived interest due to their significant potential for developing next-generation ultrafast magnetic storage. Here we report dc spin pumping by the acoustic resonant mode in a canted easy-plane antiferromagnet {alpha}-Fe2O3 enabled by the Dzyaloshinskii-Moriya interaction. Systematic angle and frequency dependent measurements demonstrate that the observed spin pumping signals arise from resonance-induced spin injection and inverse spin Hall effect in {alpha}-Fe2O3/metal heterostructures, mimicking the behavior of spin pumping in conventional ferromagnet/nonmagnet systems. The pure spin current nature is further corroborated by reversal of the polarity of spin pumping signals when the spin detector is switched from platinum to tungsten which has an opposite sign of the spin Hall angle. Our results highlight the potential opportunities offered by the low-frequency acoustic resonant mode in canted easy-plane antiferromagnets for developing next-generation, functional spintronic devices.



قيم البحث

اقرأ أيضاً

Antiferromagnetic spintronics is a promising emerging paradigm to develop high-performance computing and communications devices. From a theoretical point of view, it is important to implement simulation tools that can support a data-driven developmen t of materials having specific properties for particular applications. Here, we present a study focusing on antiferromagnetic materials having an easy-plane anisotropy and interfacial Dzyaloshinskii-Moriya interaction (IDMI). An analytical theory is developed and benchmarked against full numerical micromagnetic simulations, describing the main properties of the ground state in antiferromagnets and how it is possible to estimate the IDMI from experimental measurements. The effect of the IDMI on the electrical switching dynamics of the antiferromagnetic element is also analyzed. Our theoretical results can be used for the design of multi-terminal heavy metal/antiferromagnet memory devices.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii -Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with non-negligible Dzyaloshinskii-Moriya interaction~(DMI). A well established phase transition to the $mathbf q=0$ long-ran ge order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in inelastic neutron scattering experiment by Han et al (Nature (London) 492, 406 (2012)}). It is a time-reversal symmetry breaking $mathbb Z_2$ spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the ca pability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO2 vs BaO), from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at the oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is two times larger than that of the TiO2-BTO/CoFeB, while the DMI of the TiO2-BTO/CoFeB interface is larger. We explain the observed phenomena by first-principles calculations, which ascribe them to the different electronic states around the Fermi level at the oxide/ferromagnetic metal interfaces and the different spin-flip processes. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.
Topological defects such as magnetic solitons, vortices, Bloch lines, and skyrmions have started to play an important role in modern magnetism because of their extraordinary stability, which can be exploited in the production of memory devices. Recen tly, a novel type of antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction (DMI), has been uncovered and found to influence the formation of topological defects. Exploring how the DMI affects the dynamics of topological defects is therefore an important task. Here we investigate the dynamic domain wall (DW) under a strong DMI and find that the DMI induces an annihilation of topological vertical Bloch lines (VBLs) by lifting the four-fold degeneracy of the VBL. As a result, velocity reduction originating from the Walker breakdown is completely suppressed, leading to a soliton-like constant velocity of the DW. Furthermore, the strength of the DMI, which is the key factor for soliton-like DW motion, can be quantified without any side effects possibly arising from current-induced torques or extrinsic pinnings in magnetic films. Our results therefore shed light on the physics of dynamic topological defects, which paves the way for future work in topology-based memory applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا