ترغب بنشر مسار تعليمي؟ اضغط هنا

GSECnet: Ground Segmentation of Point Clouds for Edge Computing

80   0   0.0 ( 0 )
 نشر من قبل Dong He
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Ground segmentation of point clouds remains challenging because of the sparse and unordered data structure. This paper proposes the GSECnet - Ground Segmentation network for Edge Computing, an efficient ground segmentation framework of point clouds specifically designed to be deployable on a low-power edge computing unit. First, raw point clouds are converted into a discretization representation by pillarization. Afterward, features of points within pillars are fed into PointNet to get the corresponding pillars feature map. Then, a depthwise-separable U-Net with the attention module learns the classification from the pillars feature map with an enormously diminished model parameter size. Our proposed framework is evaluated on SemanticKITTI against both point-based and discretization-based state-of-the-art learning approaches, and achieves an excellent balance between high accuracy and low computing complexity. Remarkably, our framework achieves the inference runtime of 135.2 Hz on a desktop platform. Moreover, experiments verify that it is deployable on a low-power edge computing unit powered 10 watts only.



قيم البحث

اقرأ أيضاً

Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the lear ning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENet
3D semantic scene labeling is fundamental to agents operating in the real world. In particular, labeling raw 3D point sets from sensors provides fine-grained semantics. Recent works leverage the capabilities of Neural Networks (NNs), but are limited to coarse voxel predictions and do not explicitly enforce global consistency. We present SEGCloud, an end-to-end framework to obtain 3D point-level segmentation that combines the advantages of NNs, trilinear interpolation(TI) and fully connected Conditional Random Fields (FC-CRF). Coarse voxel predictions from a 3D Fully Convolutional NN are transferred back to the raw 3D points via trilinear interpolation. Then the FC-CRF enforces global consistency and provides fine-grained semantics on the points. We implement the latter as a differentiable Recurrent NN to allow joint optimization. We evaluate the framework on two indoor and two outdoor 3D datasets (NYU V2, S3DIS, KITTI, Semantic3D.net), and show performance comparable or superior to the state-of-the-art on all datasets.
We develop a novel learning scheme named Self-Prediction for 3D instance and semantic segmentation of point clouds. Distinct from most existing methods that focus on designing convolutional operators, our method designs a new learning scheme to enhan ce point relation exploring for better segmentation. More specifically, we divide a point cloud sample into two subsets and construct a complete graph based on their representations. Then we use label propagation algorithm to predict labels of one subset when given labels of the other subset. By training with this Self-Prediction task, the backbone network is constrained to fully explore relational context/geometric/shape information and learn more discriminative features for segmentation. Moreover, a general associated framework equipped with our Self-Prediction scheme is designed for enhancing instance and semantic segmentation simultaneously, where instance and semantic representations are combined to perform Self-Prediction. Through this way, instance and semantic segmentation are collaborated and mutually reinforced. Significant performance improvements on instance and semantic segmentation compared with baseline are achieved on S3DIS and ShapeNet. Our method achieves state-of-the-art instance segmentation results on S3DIS and comparable semantic segmentation results compared with state-of-the-arts on S3DIS and ShapeNet when we only take PointNet++ as the backbone network.
192 - Dawei Li , Yan Cao , Guoliang Shi 2019
Automatic leaf segmentation, as well as identification and classification methods that built upon it, are able to provide immediate monitoring for plant growth status to guarantee the output. Although 3D plant point clouds contain abundant phenotypic features, plant leaves are usually distributed in clusters and are sometimes seriously overlapped in the canopy. Therefore, it is still a big challenge to automatically segment each individual leaf from a highly crowded plant canopy in 3D for plant phenotyping purposes. In this work, we propose an overlapping-free individual leaf segmentation method for plant point clouds using the 3D filtering and facet region growing. In order to separate leaves with different overlapping situations, we develop a new 3D joint filtering operator, which integrates a Radius-based Outlier Filter (RBOF) and a Surface Boundary Filter (SBF) to help to separate occluded leaves. By introducing the facet over-segmentation and facet-based region growing, the noise in segmentation is suppressed and labeled leaf centers can expand to their whole leaves, respectively. Our method can work on point clouds generated from three types of 3D imaging platforms, and also suitable for different kinds of plant species. In experiments, it obtains a point-level cover rate of 97% for Epipremnum aureum, 99% for Monstera deliciosa, 99% for Calathea makoyana, and 87% for Hedera nepalensis sample plants. At the leaf level, our method reaches an average Recall at 100.00%, a Precision at 99.33%, and an average F-measure at 99.66%, respectively. The proposed method can also facilitate the automatic traits estimation of each single leaf (such as the leaf area, length, and width), which has potential to become a highly effective tool for plant research and agricultural engineering.
Middle-echo, which covers one or a few corresponding points, is a specific type of 3D point cloud acquired by a multi-echo laser scanner. In this paper, we propose a novel approach for automatic segmentation of trees that leverages middle-echo inform ation from LiDAR point clouds. First, using a convolution classification method, the proposed type of point clouds reflected by the middle echoes are identified from all point clouds. The middle-echo point clouds are distinguished from the first and last echoes. Hence, the crown positions of the trees are quickly detected from the huge number of point clouds. Second, to accurately extract trees from all point clouds, we propose a 3D deep learning network, PointNLM, to semantically segment tree crowns. PointNLM captures the long-range relationship between the point clouds via a non-local branch and extracts high-level features via max-pooling applied to unordered points. The whole framework is evaluated using the Semantic 3D reduced-test set. The IoU of tree point cloud segmentation reached 0.864. In addition, the semantic segmentation network was tested using the Paris-Lille-3D dataset. The average IoU outperformed several other popular methods. The experimental results indicate that the proposed algorithm provides an excellent solution for vegetation segmentation from LiDAR point clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا