ﻻ يوجد ملخص باللغة العربية
Although wireless technology is available for safety-critical applications, few applications have been used to improve train crossing safety. To prevent potential collisions between trains and vehicles, we present a Dedicated Short-Range Communication (DSRC)-enabled train safety communication system targeting to implement at unmanned crossings. Since our applications purpose is preventing collisions between trains and vehicles, we present a method to calculate the minimum required warning time for head-to-head collision at the train crossing. Furthermore, we define the best- and worst-case scenarios and provide practical measurements at six operating crossings in the U.S. with numerous system configurations such as modulation scheme, transmission power, antenna type, train speed, and vehicle braking distances. From our measurements, we find that the warning application coverage range is independent of the train speed, that the omnidirectional antenna with high transmission power is the best configuration for our system, and that the latency values are mostly less than 5 ms. We use the radio communication coverage to evaluate the time to avoid collision and introduce the safeness level metric. From the measured data, we observe that the DSRC-enabled train safety communication system is feasible for up to 35 mph train speeds which is providing more than 25-30 s time to avoid the collision for 25-65 mph vehicle speeds. Higher train speeds are expected to be safe, but more measurements beyond the 200 m mark with respect to a crossing considered here are needed for a definite conclusion.
Complex dynamical systems rely on the correct deployment and operation of numerous components, with state-of-the-art methods relying on learning-enabled components in various stages of modeling, sensing, and control at both offline and online levels.
The safety of connected automated vehicles (CAVs) relies on the reliable and efficient raw data sharing from multiple types of sensors. The 5G millimeter wave (mmWave) communication technology can enhance the environment sensing ability of different
Neural networks have been increasingly applied for control in learning-enabled cyber-physical systems (LE-CPSs) and demonstrated great promises in improving system performance and efficiency, as well as reducing the need for complex physical models.
Due to the rapid development technologies for small unmanned aircraft systems (sUAS), the supply and demand market for sUAS is expanding globally. With the great number of sUAS ready to fly in civilian airspace, an sUAS aircraft traffic management sy
We employ a novel data-enabled predictive control (DeePC) algorithm in voltage source converter (VSC) based high-voltage DC (HVDC) stations to perform safe and optimal wide-area control for power system oscillation damping. Conventional optimal wide-