ﻻ يوجد ملخص باللغة العربية
We have measured the scattering timescale, $tau$, and the scattering spectral index, $alpha$, for 84 single-component pulsars. Observations were carried out with the MeerKAT telescope as part of the Thousand-Pulsar-Array programme in the MeerTime project at frequencies between 0.895 and 1.670 GHz. Our results give a distribution of values for $alpha$ (defined in terms of $tau$ and frequency $ u$ as $taupropto u^{-alpha}$) for which, upon fitting a Gaussian, we obtain a mean and standard deviation of $langlealpharangle = 4.0 pm 0.6$. This is due to our identification of possible causes of inaccurate measurement of $tau$, which, if not filtered out of modelling results, tend to lead to underestimation of $alpha$. The pulsars in our sample have large dispersion measures and are therefore likely to be distant. We find that a model using an isotropic scatter broadening function is consistent with the data, likely due to the averaging effect of multiple scattering screens along the line of sight. Our sample of scattering parameters provides a strong data set upon which we can build to test more complex and time-dependent scattering phenomena, such as extreme scattering events.
We present observations of 35 high spin-down energy radio pulsars using the MeerKAT telescope. Polarisation profiles and associated parameters are also presented. We derive the geometry for a selection of pulsars which show interpulse emission. We po
We report here on initial results from the Thousand Pulsar Array (TPA) programme, part of the Large Survey Project MeerTime on the MeerKAT telescope. The interferometer is used in tied-array mode in the band from 856 to 1712~MHz, and the wide band co
The Thousand Pulsar Array (TPA) project currently monitors about 500 pulsars with the sensitive MeerKAT radio telescope by using subarrays to observe multiple sources simultaneously. Here we define the adopted observing strategy, which guarantees tha
We describe the ongoing Relativistic Binary programme (RelBin), a part of the MeerTime large survey project with the MeerKAT radio telescope. RelBin is primarily focused on observations of relativistic effects in binary pulsars to enable measurements
Using the state-of-the-art SKA precursor, the MeerKAT radio telescope, we explore the limits to precision pulsar timing of millisecond pulsars achievable due to pulse stochasticity (jitter). We report new jitter measurements in 15 of the 29 pulsars i