ﻻ يوجد ملخص باللغة العربية
Gas has been detected in many exoplanetary systems ($>$10 Myr), thought to be released in the destruction of volatile-rich planetesimals orbiting in exo-Kuiper belts. In this letter, we aim to explore whether gas is also expected in the Kuiper belt (KB) in our Solar System. To quantify the gas release in our Solar System, we use models for gas release that have been applied to extrasolar planetary systems, as well as a physical model that accounts for gas released due to the progressive internal warming of large planetesimals. We find that only bodies larger than about 4 km can still contain CO ice after 4.6 Gyr of evolution. This finding may provide a clue as to why Jupiter-family comets, thought to originate in the Kuiper belt, are deficient in CO compared to Oort-clouds comets. We predict that gas is still produced in the KB right now at a rate of $2 times 10^{-8}$ M$_oplus$/Myr for CO and orders of magnitude more when the Sun was younger. Once released, the gas is quickly pushed out by the Solar wind. Therefore, we predict a gas wind in our Solar System starting at the KB location and extending far beyond with regards to the heliosphere with a current total CO mass of $sim 2 times 10^{-12}$ M$_oplus$. We also predict the existence of a slightly more massive atomic gas wind made of carbon and oxygen (neutral and ionized) with a mass of $sim 10^{-11}$ M$_oplus$. We predict that gas is currently present in our Solar System beyond the Kuiper belt and that although it cannot be detected with current instrumentation, it could be observed in the future with an in situ mission using an instrument similar to Alice on New Horizons with larger detectors. Our model of gas release due to slow heating may also work for exoplanetary systems and provide the first real physical mechanism for the gas observations.
Here we report WFPC2 observations of the Quaoar-Weywot Kuiper belt binary. From these observations we find that Weywot is on an elliptical orbit with eccentricity of 0.14 {pm} 0.04, period of 12.438 {pm} 0.005 days, and a semi-major axis of 1.45 {pm}
Here we present observations of 7 large Kuiper Belt Objects. From these observations, we extract a point source catalog with $sim0.01$ precision, and astrometry of our target Kuiper Belt Objects with $0.04-0.08$ precision within that catalog. We have
Observations show that 100-km-class Kuiper belt objects (KBOs) can be divided in (at least) two color groups, hereafter red (R, g-i<1.2) and very red (VR, g-i>1.2), reflecting a difference in their surface composition. This is thought to imply that K
Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all
The central objective of the New Horizons prime mission was to make the first exploration of Pluto and its system of moons. Following that, New Horizons has been approved for its first extended mission, which has the objectives of extensively studyin