ترغب بنشر مسار تعليمي؟ اضغط هنا

Hard X-ray Transient Grating Spectroscopy on Bismuth Germanate

293   0   0.0 ( 0 )
 نشر من قبل J\\'er\\'emy Rouxel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical-domain Transient Grating (TG) spectroscopy is a versatile background-free four-wave-mixing technique used to probe vibrational, magnetic and electronic degrees of freedom in the time domain. The newly developed coherent X-ray Free Electron Laser sources allow its extension to the X-ray regime. Xrays offer multiple advantages for TG: their large penetration depth allows probing the bulk properties of materials, their element-specificity can address core-excited states, and their short wavelengths create excitation gratings with unprecedented momentum transfer and spatial resolution. We demonstrate for the first time TG excitation in the hard X-ray range at 7.1 keV. In Bismuth Germanate (BGO), the nonresonant TG excitation generates coherent optical phonons detected as a function of time by diffraction of an optical probe pulse. This experiment demonstrates the ability to probe bulk properties of materials and paves the way for ultrafast coherent four-wave-mixing techniques using X-ray probes and involving nanoscale TG spatial periods.



قيم البحث

اقرأ أيضاً

168 - Emily Sistrunk 2014
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demon strate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO2 film with EUV diffraction from the optically excited sample. The VO2 exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.
Structure-property relationships are the foundation of materials science. Linking microstructure and material properties is essential for predicting material response to driving forces, managing in-service material degradation, and engineering materi als for optimal performance. Elastic, thermal, and acoustic properties provide a convenient gateway to directly or indirectly probe material structure across multiple length scales. We review how using the laser-induced transient grating spectroscopy (TGS) technique, which uses a transient diffraction grating to generate surface acoustic waves (SAWs) and temperature gratings on a material surface, non-destructively reveals the material elasticity, thermal diffusivity, and energy dissipation on the sub-microsecond timescale, within a tunable sub-surface depth. This technique has already been applied to many challenging problems in materials characterization, from analysis of radiation damage, to colloidal crystals, to phonon-mediated thermal transport in nanostructured systems, to crystal orientation and lattice parameter determination. Examples of these applications, as well as inferring aspects of microstructural evolution, illustrate the wide potential reach of TGS to solve old materials challenges, and to uncover new science. We conclude by looking ahead at the tremendous potential of TGS for materials discovery and optimization when applied in situ to dynamically evolving systems.
A laboratory hard X-ray photoelectron spectroscopy (HXPS) system equipped with a monochromatic Cr K$alpha$ ($h u = 5414.7$ eV) X-ray source was applied to an investigation of the core-level electronic structure of La$_{1-x}$Sr$_x$MnO$_3$. No apprecia ble high binding-energy shoulder in the O $1s$ HXPS spectra were observed while an enhanced low binding-energy shoulder structure in the Mn $2p_{3/2}$ HXPS spectra were observed, both of which are manifestation of high bulk sensitivity. Such high bulk sensitivity enabled us to track the Mn $2p_{3/2}$ shoulder structure in the full range of $x$, giving us a new insight into the binding-energy shift of the Mn $2p_{3/2}$ core level. Comparisons with the results using the conventional laboratory XPS ($h u = 1486.6$ eV) as well as those using a synchrotron radiation source ($h u = 7939.9$ eV) demonstrate that HXPS is a powerful and convenient tool to analyze the bulk electronic structure of a host of different compounds.
With their brilliance and temporal structure, X-ray free-electron laser can unveil atomic-scale details of ultrafast phenomena. Recent progress in split-and-delay optics (SDO), which produces two X-ray pulses with time-delays, offers bright prospects for observing dynamics at the atomic-scale. However, their insufficient pulse energy has limited its application either to phenomena with longer correlation length or to measurement with a fixed delay-time. Here we show that the combination of the SDO and self-seeding of X-rays increases the pulse energy and makes it possible to observe the atomic-scale dynamics in a timescale of picoseconds. We show that the speckle contrast in scattering from water depends on the delay-time as expected. Our results demonstrate the capability of measurement using the SDO with seeded X-rays for resolving the dynamics in temporal and spatial scales that are not accessible by other techniques, opening opportunities for studying the atomic-level dynamics.
The evolution of the bismuth crystal structure upon excitation of its A$_{1g}$ phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismu th single crystal, at high intensities (~$10^{14}$ W/cm$^2$). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300fs, i.e. faster than one oscillation period of the A1g mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to a plasma formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا