ﻻ يوجد ملخص باللغة العربية
A novel application of machine-learning (ML) based image processing algorithms is proposed to analyze an all-sky map (ASM) obtained using the Fermi Gamma-ray Space Telescope. An attempt was made to simulate a one-year ASM from a short-exposure ASM generated from one-week observation by applying three ML based image processing algorithms: dictionary learning, U-net, and Noise2Noise. Although the inference based on ML is less clear compared to standard likelihood analysis, the quality of the ASM was generally improved. In particular, the complicated diffuse emission associated with the galactic plane was successfully reproduced only from one-week observation data to mimic a ground truth (GT) generated from a one-year observation. Such ML algorithms can be implemented relatively easily to provide sharper images without various assumptions of emission models. In contrast, large deviations between simulated ML maps and GT map were found, which are attributed to the significant temporal variability of blazar-type active galactic nuclei (AGNs) over a year. Thus, the proposed ML methods are viable not only to improve the image quality of an ASM, but also to detect variable sources, such as AGNs, algorithmically, i.e., without human bias. Moreover, we argue that this approach is widely applicable to ASMs obtained by various other missions; thus, it has the potential to examine giant structures and transient events, both of which are rarely found in pointing observations.
Classification of sources is one of the most important tasks in astronomy. Sources detected in one wavelength band, for example using gamma rays, may have several possible associations in other wavebands or there may be no plausible association candi
Since 2008 August the Fermi Large Area Telescope (LAT) has provided continuous coverage of the gamma-ray sky yielding more than 5000 gamma-ray sources, but 54% of the detected sources remain with no certain or unknown association with a low energy co
We present the first Fermi Large Area Telescope (LAT) low energy catalog (1FLE) of sources detected in the energy range 30 - 100 MeV. The COMPTEL telescope detected sources below 30 MeV, while catalogs released by the Fermi-LAT and EGRET collaboratio
Four years into the mission, the understanding of the performance of the Fermi Large Area Telescope (LAT) and data analysis have increased enormously since launch. Thanks to a careful analysis of flight data, we were able to trace back some of the mo
The analysis of Fermi Large Area Telescope (LAT) gamma-ray data in a given Region Of Interest (RoI) usually consists of performing a binned log-likelihood fit in order to determine the sky model that, after convolution with the instrument response, b