ﻻ يوجد ملخص باللغة العربية
Recently, models have been shown to predict the effects of unexpected situations, e.g., would cloudy skies help or hinder plant growth? Given a context, the goal of such situational reasoning is to elicit the consequences of a new situation (st) that arises in that context. We propose a method to iteratively build a graph of relevant consequences explicitly in a structured situational graph (st-graph) using natural language queries over a finetuned language model (M). Across multiple domains, CURIE generates st-graphs that humans find relevant and meaningful in eliciting the consequences of a new situation. We show that st-graphs generated by CURIE improve a situational reasoning end task (WIQA-QA) by 3 points on accuracy by simply augmenting their input with our generated situational graphs, especially for a hard subset that requires background knowledge and multi-hop reasoning.
In this paper, we present an epistemic logic approach to the compositionality of several privacy-related informationhiding/ disclosure properties. The properties considered here are anonymity, privacy, onymity, and identity. Our initial observation r
Authors often transform a large screen visualization for smaller displays through rescaling, aggregation and other techniques when creating visualizations for both desktop and mobile devices (i.e., responsive visualization). However, transformations
We propose a suite of reasoning tasks on two types of relations between procedural events: goal-step relations (learn poses is a step in the larger goal of doing yoga) and step-step temporal relations (buy a yoga mat typically precedes learn poses).
Question: I have five fingers but I am not alive. What am I? Answer: a glove. Answering such a riddle-style question is a challenging cognitive process, in that it requires complex commonsense reasoning abilities, an understanding of figurative langu
Norms with sanctions have been widely employed as a mechanism for controlling and coordinating the behavior of agents without limiting their autonomy. The norms enforced in a multi-agent system can be revised in order to increase the likelihood that