ترغب بنشر مسار تعليمي؟ اضغط هنا

A Front-End for Dense Monocular SLAM using a Learned Outlier Mask Prior

82   0   0.0 ( 0 )
 نشر من قبل Yihao Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent achievements in depth prediction from a single RGB image have powered the new research area of combining convolutional neural networks (CNNs) with classical simultaneous localization and mapping (SLAM) algorithms. The depth prediction from a CNN provides a reasonable initial point in the optimization process in the traditional SLAM algorithms, while the SLAM algorithms further improve the CNN prediction online. However, most of the current CNN-SLAM approaches have only taken advantage of the depth prediction but not yet other products from a CNN. In this work, we explore the use of the outlier mask, a by-product from unsupervised learning of depth from video, as a prior in a classical probability model for depth estimate fusion to step up the outlier-resistant tracking performance of a SLAM front-end. On the other hand, some of the previous CNN-SLAM work builds on feature-based sparse SLAM methods, wasting the per-pixel dense prediction from a CNN. In contrast to these sparse methods, we devise a dense CNN-assisted SLAM front-end that is implementable with TensorFlow and evaluate it on both indoor and outdoor datasets.



قيم البحث

اقرأ أيضاً

This paper proposes a novel simultaneous localization and mapping (SLAM) approach, namely Attention-SLAM, which simulates human navigation mode by combining a visual saliency model (SalNavNet) with traditional monocular visual SLAM. Most SLAM methods treat all the features extracted from the images as equal importance during the optimization process. However, the salient feature points in scenes have more significant influence during the human navigation process. Therefore, we first propose a visual saliency model called SalVavNet in which we introduce a correlation module and propose an adaptive Exponential Moving Average (EMA) module. These modules mitigate the center bias to enable the saliency maps generated by SalNavNet to pay more attention to the same salient object. Moreover, the saliency maps simulate the human behavior for the refinement of SLAM results. The feature points extracted from the salient regions have greater importance in optimization process. We add semantic saliency information to the Euroc dataset to generate an open-source saliency SLAM dataset. Comprehensive test results prove that Attention-SLAM outperforms benchmarks such as Direct Sparse Odometry (DSO), ORB-SLAM, and Salient DSO in terms of efficiency, accuracy, and robustness in most test cases.
In this paper, we present a system for incrementally reconstructing a dense 3D model of the geometry of an outdoor environment using a single monocular camera attached to a moving vehicle. Dense models provide a rich representation of the environment facilitating higher-level scene understanding, perception, and planning. Our system employs dense depth prediction with a hybrid mapping architecture combining state-of-the-art sparse features and dense fusion-based visual SLAM algorithms within an integrated framework. Our novel contributions include design of hybrid sparse-dense camera tracking and loop closure, and scale estimation improvements in dense depth prediction. We use the motion estimates from the sparse method to overcome the large and variable inter-frame displacement typical of outdoor vehicle scenarios. Our system then registers the live image with the dense model using whole-image alignment. This enables the fusion of the live frame and dense depth prediction into the model. Global consistency and alignment between the sparse and dense models are achieved by applying pose constraints from the sparse method directly within the deformation of the dense model. We provide qualitative and quantitative results for both trajectory estimation and surface reconstruction accuracy, demonstrating competitive performance on the KITTI dataset. Qualitative results of the proposed approach are illustrated in https://youtu.be/Pn2uaVqjskY. Source code for the project is publicly available at the following repository https://github.com/robotvisionmu/DenseMonoSLAM.
112 - Junru Gu , Chen Sun , Hang Zhao 2021
Due to the stochasticity of human behaviors, predicting the future trajectories of road agents is challenging for autonomous driving. Recently, goal-based multi-trajectory prediction methods are proved to be effective, where they first score over-sam pled goal candidates and then select a final set from them. However, these methods usually involve goal predictions based on sparse pre-defined anchors and heuristic goal selection algorithms. In this work, we propose an anchor-free and end-to-end trajectory prediction model, named DenseTNT, that directly outputs a set of trajectories from dense goal candidates. In addition, we introduce an offline optimization-based technique to provide multi-future pseudo-labels for our final online model. Experiments show that DenseTNT achieves state-of-the-art performance, ranking 1st on the Argoverse motion forecasting benchmark and being the 1st place winner of the 2021 Waymo Open Dataset Motion Prediction Challenge.
In this paper, we introduce OpenVSLAM, a visual SLAM framework with high usability and extensibility. Visual SLAM systems are essential for AR devices, autonomous control of robots and drones, etc. However, conventional open-source visual SLAM framew orks are not appropriately designed as libraries called from third-party programs. To overcome this situation, we have developed a novel visual SLAM framework. This software is designed to be easily used and extended. It incorporates several useful features and functions for research and development. OpenVSLAM is released at https://github.com/xdspacelab/openvslam under the 2-clause BSD license.
This paper demonstrates a system capable of combining a sparse, indirect, monocular visual SLAM, with both offline and real-time Multi-View Stereo (MVS) reconstruction algorithms. This combination overcomes many obstacles encountered by autonomous ve hicles or robots employed in agricultural environments, such as overly repetitive patterns, need for very detailed reconstructions, and abrupt movements caused by uneven roads. Furthermore, the use of a monocular SLAM makes our system much easier to integrate with an existing device, as we do not rely on a LiDAR (which is expensive and power consuming), or stereo camera (whose calibration is sensitive to external perturbation e.g. camera being displaced). To the best of our knowledge, this paper presents the first evaluation results for monocular SLAM, and our work further explores unsupervised depth estimation on this specific application scenario by simulating RGB-D SLAM to tackle the scale ambiguity, and shows our approach produces reconstructions that are helpful to various agricultural tasks. Moreover, we highlight that our experiments provide meaningful insight to improve monocular SLAM systems under agricultural settings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا