ﻻ يوجد ملخص باللغة العربية
Mt. Abu Faint Object Spectrograph and Camera - Pathfinder (MFOSC-P) is an imager-spectrograph developed for the Physical Research Laboratory (PRL) 1.2m telescope at Gurushikhar, Mt. Abu, India. MFOSC-P is based on a focal reducer concept and provides seeing limited imaging (with a sampling of 3.3 pixels per arc-second) in Bessells B, V, R, I and narrow-band H-$alpha$ filters. The instrument uses three plane reflection gratings, covering the spectral range of 4500-8500$AA$, with three different resolutions of 500, 1000, and 2000 around their central wavelengths. MFOSC-P was conceived as a pathfinder instrument for a next-generation instrument on the PRLs 2.5m telescope which is coming up at Mt. Abu. The instrument was developed during 2015-2019 and successfully commissioned on the PRL 1.2m telescope in February 2019. The designed performance has been verified with laboratory characterization tests and on-sky commissioning observations. Different science programs covering a range of objects are being executed with MFOSC-P since then, e.g., spectroscopy of M-dwarfs, novae $&$ symbiotic systems, and detection of H-$alpha$ emission in star-forming regions. MFOSC-P presents a novel design and cost-effective way to develop a FOSC (Faint Object Spectrograph and Camera) type of instrument on a shorter time-scale of development. The design and development methodology presented here is most suitable in helping the small aperture telescope community develop such a versatile instrument, thereby diversifying the science programs of such observatories.
The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a
The Beijing Faint Object Spectrograph and Camera (BFOSC) is one of the most important instruments of the 2.16-m telescope of the Xinglong Observatory. Every year there are ~ 20 SCI-papers published based on the observational data of this telescope. I
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS will cover a 1.3 degree diameter field with 2394 fibers to complement the imaging capabilities o
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA fiber motors for the c